Home
Class 14
MATHS
In a Delta ABC, AB=12cm, angle ABC=30^(@...

In a `Delta ABC, AB=12cm, angle ABC=30^(@), angle ACB=45^(@)` find the area of `Delta ABC` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle ABC given the sides and angles, we can follow these steps: ### Step-by-Step Solution: 1. **Identify Given Values**: - Side \( AB = 12 \, \text{cm} \) - Angle \( \angle ABC = 30^\circ \) - Angle \( \angle ACB = 45^\circ \) 2. **Calculate Angle \( \angle BAC \)**: - Using the triangle angle sum property, we can find angle \( \angle BAC \): \[ \angle BAC = 180^\circ - \angle ABC - \angle ACB = 180^\circ - 30^\circ - 45^\circ = 105^\circ \] 3. **Use the Formula for Area of Triangle**: - The area \( A \) of triangle can be calculated using the formula: \[ A = \frac{1}{2} \times a \times b \times \sin(C) \] where \( a \) and \( b \) are two sides and \( C \) is the included angle between them. Here, we can use sides \( AB \) and \( AC \) (which we will find) with angle \( \angle BAC \). 4. **Find Side \( AC \)**: - To find side \( AC \), we can use the Law of Sines: \[ \frac{AB}{\sin(\angle ACB)} = \frac{AC}{\sin(\angle ABC)} \] Rearranging gives: \[ AC = \frac{AB \cdot \sin(\angle ABC)}{\sin(\angle ACB)} = \frac{12 \cdot \sin(30^\circ)}{\sin(45^\circ)} \] - We know \( \sin(30^\circ) = \frac{1}{2} \) and \( \sin(45^\circ) = \frac{\sqrt{2}}{2} \): \[ AC = \frac{12 \cdot \frac{1}{2}}{\frac{\sqrt{2}}{2}} = \frac{12 \cdot 1}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2} \, \text{cm} \] 5. **Find Side \( BC \)**: - Now we can find side \( BC \) using the Law of Sines again: \[ \frac{BC}{\sin(\angle BAC)} = \frac{AB}{\sin(\angle ACB)} \] Rearranging gives: \[ BC = \frac{AB \cdot \sin(\angle BAC)}{\sin(\angle ACB)} = \frac{12 \cdot \sin(105^\circ)}{\sin(45^\circ)} \] - We know \( \sin(105^\circ) = \sin(180^\circ - 75^\circ) = \sin(75^\circ) = \frac{\sqrt{6} + \sqrt{2}}{4} \): \[ BC = \frac{12 \cdot \frac{\sqrt{6} + \sqrt{2}}{4}}{\frac{\sqrt{2}}{2}} = \frac{12(\sqrt{6} + \sqrt{2})}{4} \cdot \frac{2}{\sqrt{2}} = \frac{12(\sqrt{6} + \sqrt{2}) \cdot 2}{4\sqrt{2}} = \frac{6(\sqrt{6} + \sqrt{2})}{\sqrt{2}} = 3(\sqrt{12} + 2) = 6\sqrt{3} + 6 \] 6. **Calculate the Area**: - Now we can calculate the area using the formula: \[ A = \frac{1}{2} \times AB \times AC \times \sin(\angle BAC) = \frac{1}{2} \times 12 \times 6\sqrt{2} \times \sin(105^\circ) \] - Substituting \( \sin(105^\circ) \): \[ A = \frac{1}{2} \times 12 \times 6\sqrt{2} \times \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{72\sqrt{2}(\sqrt{6} + \sqrt{2})}{8} = 9\sqrt{2}(\sqrt{6} + \sqrt{2}) = 9(\sqrt{12} + 2) = 9(2\sqrt{3} + 2) = 18\sqrt{3} + 18 \] ### Final Answer: The area of triangle ABC is \( 18\sqrt{3} + 18 \, \text{cm}^2 \).
Promotional Banner

Topper's Solved these Questions

  • GEOMETRY

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|158 Videos
  • LCM & HCF

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |140 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, angle A=90^(@), angle B=30^(@) find the ratio of sides .

If in a Delta ABC, angle A = 45^(@) , angle B = 75^(@), then

In Delta ABC angle B = 60^(@) angle C = 45^(@) AB = 12 cm Find area of Delta

In a Delta ABC, AB=10 cm, AC=15, AD is angle bisector . If the area of Delta ABD=18cm^(2) . Find area of Delta ABC

I is the incentre of Delta ABC, angle ABC=60^(@) and angle ACB=50^(@) . Then find angle BIC .

In a triangle ABC, AB = 8 cm, AC = 10 cm and angleB = 90^(@) , then the area of Delta ABC is

In Delta ABC, AD is median. If area of Delta ABD = 25 cm^(2) find the area of Delta ABC .

In Delta ABC ,if a=2, B=120^(@),C=30^(@) then area of Delta ABC is

In a Delta ABC , angle A=120^(@), AB=20 cm, AC =30 cm find the angle bisector AD .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-GEOMETRY TRIANGLES-QUESTIONS
  1. In a Delta ABC , angle A=120^(@), AB=20 cm, AC =30 cm find the angle ...

    Text Solution

    |

  2. In a Delta ABC, angle A=90^(@), angle B=30^(@) find the ratio of sides...

    Text Solution

    |

  3. In a Delta ABC, AB=12cm, angle ABC=30^(@), angle ACB=45^(@) find the a...

    Text Solution

    |

  4. In a Delta ABC, AD divides BC in the ratio 1:3. If angle B=60^(@) ang...

    Text Solution

    |

  5. In a Delta ABC, angle A=120^(@), AB =6 cm, AC=8 cm find the l,ength of...

    Text Solution

    |

  6. In a Delta ABC, AB=5 cm, AC=7 cm, BC=6cm, If AD | BC BC. Find the leng...

    Text Solution

    |

  7. In a Delta ABC, AB=AC=17cm D is a point on BC such that AD=15, CD=4 cm...

    Text Solution

    |

  8. In a Delta ABC, AB=AC, D is a point BC such that angle BAD=50^(@) and ...

    Text Solution

    |

  9. In Delta ABC there are 2 points D and E on BC such that BD: DE: EC =3:...

    Text Solution

    |

  10. In a Delta ABC, AB=10 cm, AC=15, AD is angle bisector . If the area o...

    Text Solution

    |

  11. In a Delta ABC, angle B=100^(@), angle C=70^(@), AE | BC & AD is angle...

    Text Solution

    |

  12. In a Delta ABC, angle bisector of interior angle B and exterior angle ...

    Text Solution

    |

  13. In a Delta ABC, G is centroid and AD, BE, CF are medians. Find the are...

    Text Solution

    |

  14. In a Delta ABC, angle B=90^(@), median AD and CF intersects at 'O' . F...

    Text Solution

    |

  15. AD is a median of triangle ABC. G is a mid point of AD. If area of tri...

    Text Solution

    |

  16. In a Delta ABC, G is centroid , AG=BC. Find angle BGC.

    Text Solution

    |

  17. In Delta ABC, D is the mid-point of BC . Length AD is 27 cm . N is a p...

    Text Solution

    |

  18. Two medians AD and BE of Delta ABC intersect at G at right angles . I...

    Text Solution

    |

  19. G is the centroid of Delta ABC. The medians AD and BE intersect at rig...

    Text Solution

    |

  20. If in a triangle ABC, BE and CF are two medians perpendicular to each ...

    Text Solution

    |