Home
Class 14
MATHS
Find the unit digit of expression (259)^...

Find the unit digit of expression
`(259)^123 – (525)^111 – (236)^122 – (414)^115 + (323)^81`

A

3

B

4

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of the expression \( (259)^{123} - (525)^{111} - (236)^{122} - (414)^{115} + (323)^{81} \), we will analyze the unit digits of each term separately. ### Step 1: Find the unit digit of \( (259)^{123} \) - The unit digit of \( 259 \) is \( 9 \). - The powers of \( 9 \) cycle through \( 9, 1 \) (i.e., \( 9^1 = 9 \), \( 9^2 = 81 \) (unit digit \( 1 \)), \( 9^3 = 729 \) (unit digit \( 9 \)), \( 9^4 = 6561 \) (unit digit \( 1 \)), ...). - The cycle length is \( 2 \). - To find \( 9^{123} \), we calculate \( 123 \mod 2 = 1 \). - Thus, the unit digit of \( (259)^{123} \) is \( 9 \). ### Step 2: Find the unit digit of \( (525)^{111} \) - The unit digit of \( 525 \) is \( 5 \). - The unit digit of any power of \( 5 \) is always \( 5 \). - Thus, the unit digit of \( (525)^{111} \) is \( 5 \). ### Step 3: Find the unit digit of \( (236)^{122} \) - The unit digit of \( 236 \) is \( 6 \). - The unit digit of any power of \( 6 \) is always \( 6 \). - Thus, the unit digit of \( (236)^{122} \) is \( 6 \). ### Step 4: Find the unit digit of \( (414)^{115} \) - The unit digit of \( 414 \) is \( 4 \). - The powers of \( 4 \) cycle through \( 4, 6 \) (i.e., \( 4^1 = 4 \), \( 4^2 = 16 \) (unit digit \( 6 \)), \( 4^3 = 64 \) (unit digit \( 4 \)), \( 4^4 = 256 \) (unit digit \( 6 \)), ...). - The cycle length is \( 2 \). - To find \( 4^{115} \), we calculate \( 115 \mod 2 = 1 \). - Thus, the unit digit of \( (414)^{115} \) is \( 4 \). ### Step 5: Find the unit digit of \( (323)^{81} \) - The unit digit of \( 323 \) is \( 3 \). - The powers of \( 3 \) cycle through \( 3, 9, 7, 1 \) (i.e., \( 3^1 = 3 \), \( 3^2 = 9 \), \( 3^3 = 27 \) (unit digit \( 7 \)), \( 3^4 = 81 \) (unit digit \( 1 \)), ...). - The cycle length is \( 4 \). - To find \( 3^{81} \), we calculate \( 81 \mod 4 = 1 \). - Thus, the unit digit of \( (323)^{81} \) is \( 3 \). ### Step 6: Combine the unit digits Now we can substitute the unit digits back into the expression: - \( 9 - 5 - 6 - 4 + 3 \) Calculating this step-by-step: 1. \( 9 - 5 = 4 \) 2. \( 4 - 6 = -2 \) 3. \( -2 - 4 = -6 \) 4. \( -6 + 3 = -3 \) ### Step 7: Find the final unit digit - The result is \( -3 \). - To convert this to a positive unit digit, we can add \( 10 \) (since we are interested in the unit digit): - \( -3 + 10 = 7 \) Thus, the unit digit of the expression \( (259)^{123} - (525)^{111} - (236)^{122} - (414)^{115} + (323)^{81} \) is **7**.
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

Find the unit digit of expression (599)^122 – (125)^625 – (144)^124 + (236)^36 + (127)^121

Find the unit digit of expression 125^813 * 553^3703 * 4537^828?

Find the unit digit of (33)^(123)

Find the units' digit in the expression (515)^(31)+(525)^(90)?

Find the unit digit of the following (357)^(122)

Find the unit digit of expression (823)^(933!) × (777)^(223!) × (838)^(123!) × (525)^(111!)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. If a number 6784329x145 is divisible by 11, then find the value of x.

    Text Solution

    |

  2. What will come in place of unit digit in the value of (7)^(35) xx (3)^...

    Text Solution

    |

  3. Find the unit digit of expression (259)^123 – (525)^111 – (236)^122 – ...

    Text Solution

    |

  4. Find the unit digit of expression (599)^122 – (125)^625 – (144)^124 + ...

    Text Solution

    |

  5. Find the unit digit of expression (216) ^1000× (625) ^2000×(514) ^3000...

    Text Solution

    |

  6. Find the unit digit of expression (823)^(933!) × (777)^(223!) × (838)^...

    Text Solution

    |

  7. Find the unit digit of expression 125^813 * 553^3703 * 4537^828?

    Text Solution

    |

  8. Find the unit digit of expression (232)^(123!) × (353)^(124!) × (424)^...

    Text Solution

    |

  9. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  10. The last digit of the following expreesion is : (1!)^1 + (2!)^(2) + ...

    Text Solution

    |

  11. Find the unit digit in the expression :(1!)^(1!) + (2!)^(2!) + (3!)^(3...

    Text Solution

    |

  12. Find the unit digit in the expression : (3^57*6^41*7^63)

    Text Solution

    |

  13. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  14. If 100! divisible by 3^n then find the maximum value of n.

    Text Solution

    |

  15. If 122! is divisible by 6^n then find the maximum value of n.

    Text Solution

    |

  16. If 123! is divisible by 12^(n) then find the maximum value of n.

    Text Solution

    |

  17. If 133! is divisible by 7^(n) then find the maximum value of n.

    Text Solution

    |

  18. If 187! is divisible by 15^(n) then find the maximum value of n.

    Text Solution

    |

  19. Find no of zeros in 100 !

    Text Solution

    |

  20. Find the no. of zeros in expression : 1 × 2 × 3 × 4 .......... × 500

    Text Solution

    |