Home
Class 14
MATHS
Find the unit digit of expression (599)^...

Find the unit digit of expression
`(599)^122 – (125)^625 – (144)^124 + (236)^36 + (127)^121`

A

3

B

4

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of the expression \( (599)^{122} - (125)^{625} - (144)^{124} + (236)^{36} + (127)^{121} \), we will calculate the unit digit of each term separately and then combine them according to the operations in the expression. ### Step 1: Find the unit digit of \( (599)^{122} \) The unit digit of \( 599 \) is \( 9 \). We need to find the unit digit of \( 9^{122} \). The unit digits of powers of \( 9 \) follow a pattern: - \( 9^1 = 9 \) (unit digit is \( 9 \)) - \( 9^2 = 81 \) (unit digit is \( 1 \)) - \( 9^3 = 729 \) (unit digit is \( 9 \)) - \( 9^4 = 6561 \) (unit digit is \( 1 \)) Thus, the unit digits alternate between \( 9 \) and \( 1 \): - For odd powers, the unit digit is \( 9 \). - For even powers, the unit digit is \( 1 \). Since \( 122 \) is even, the unit digit of \( (599)^{122} \) is \( 1 \). ### Step 2: Find the unit digit of \( (125)^{625} \) The unit digit of \( 125 \) is \( 5 \). The unit digit of any power of \( 5 \) is always \( 5 \). Thus, the unit digit of \( (125)^{625} \) is \( 5 \). ### Step 3: Find the unit digit of \( (144)^{124} \) The unit digit of \( 144 \) is \( 4 \). The unit digits of powers of \( 4 \) follow a pattern: - \( 4^1 = 4 \) (unit digit is \( 4 \)) - \( 4^2 = 16 \) (unit digit is \( 6 \)) - \( 4^3 = 64 \) (unit digit is \( 4 \)) - \( 4^4 = 256 \) (unit digit is \( 6 \)) The unit digits alternate between \( 4 \) and \( 6 \): - For odd powers, the unit digit is \( 4 \). - For even powers, the unit digit is \( 6 \). Since \( 124 \) is even, the unit digit of \( (144)^{124} \) is \( 6 \). ### Step 4: Find the unit digit of \( (236)^{36} \) The unit digit of \( 236 \) is \( 6 \). The unit digit of any power of \( 6 \) is always \( 6 \). Thus, the unit digit of \( (236)^{36} \) is \( 6 \). ### Step 5: Find the unit digit of \( (127)^{121} \) The unit digit of \( 127 \) is \( 7 \). The unit digits of powers of \( 7 \) follow a pattern: - \( 7^1 = 7 \) (unit digit is \( 7 \)) - \( 7^2 = 49 \) (unit digit is \( 9 \)) - \( 7^3 = 343 \) (unit digit is \( 3 \)) - \( 7^4 = 2401 \) (unit digit is \( 1 \)) The unit digits repeat every \( 4 \): - \( 7, 9, 3, 1 \) To find the unit digit of \( 7^{121} \), we calculate \( 121 \mod 4 \): - \( 121 \div 4 = 30 \) remainder \( 1 \). Thus, the unit digit is the same as \( 7^1 \), which is \( 7 \). ### Step 6: Combine the unit digits Now we combine the unit digits from each term: - Unit digit of \( (599)^{122} \) is \( 1 \). - Unit digit of \( (125)^{625} \) is \( 5 \). - Unit digit of \( (144)^{124} \) is \( 6 \). - Unit digit of \( (236)^{36} \) is \( 6 \). - Unit digit of \( (127)^{121} \) is \( 7 \). Now, we compute: \[ 1 - 5 - 6 + 6 + 7 \] Calculating step-by-step: 1. \( 1 - 5 = -4 \) 2. \( -4 - 6 = -10 \) 3. \( -10 + 6 = -4 \) 4. \( -4 + 7 = 3 \) The unit digit of the entire expression is \( 3 \). ### Final Answer The unit digit of the expression \( (599)^{122} - (125)^{625} - (144)^{124} + (236)^{36} + (127)^{121} \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

Find the unit digit of expression (259)^123 – (525)^111 – (236)^122 – (414)^115 + (323)^81

Find the unit digit of expression (216) ^1000× (625) ^2000×(514) ^3000?

Find the unit digit of expression 125^813 * 553^3703 * 4537^828?

Find the unit digit of the following (357)^(122)

Find the units' digit in the expression (515)^(31)+(525)^(90)?

Find the unit digit in the expression : (3^57*6^41*7^63)

Find the unit digit in the expression. (184)^396 xx (37)^44 xx (121)^56

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. What will come in place of unit digit in the value of (7)^(35) xx (3)^...

    Text Solution

    |

  2. Find the unit digit of expression (259)^123 – (525)^111 – (236)^122 – ...

    Text Solution

    |

  3. Find the unit digit of expression (599)^122 – (125)^625 – (144)^124 + ...

    Text Solution

    |

  4. Find the unit digit of expression (216) ^1000× (625) ^2000×(514) ^3000...

    Text Solution

    |

  5. Find the unit digit of expression (823)^(933!) × (777)^(223!) × (838)^...

    Text Solution

    |

  6. Find the unit digit of expression 125^813 * 553^3703 * 4537^828?

    Text Solution

    |

  7. Find the unit digit of expression (232)^(123!) × (353)^(124!) × (424)^...

    Text Solution

    |

  8. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  9. The last digit of the following expreesion is : (1!)^1 + (2!)^(2) + ...

    Text Solution

    |

  10. Find the unit digit in the expression :(1!)^(1!) + (2!)^(2!) + (3!)^(3...

    Text Solution

    |

  11. Find the unit digit in the expression : (3^57*6^41*7^63)

    Text Solution

    |

  12. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  13. If 100! divisible by 3^n then find the maximum value of n.

    Text Solution

    |

  14. If 122! is divisible by 6^n then find the maximum value of n.

    Text Solution

    |

  15. If 123! is divisible by 12^(n) then find the maximum value of n.

    Text Solution

    |

  16. If 133! is divisible by 7^(n) then find the maximum value of n.

    Text Solution

    |

  17. If 187! is divisible by 15^(n) then find the maximum value of n.

    Text Solution

    |

  18. Find no of zeros in 100 !

    Text Solution

    |

  19. Find the no. of zeros in expression : 1 × 2 × 3 × 4 .......... × 500

    Text Solution

    |

  20. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |