Home
Class 14
MATHS
Find the unit digit of expression (823)^...

Find the unit digit of expression
`(823)^(933!) × (777)^(223!) × (838)^(123!) × (525)^(111!)`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of the expression \( (823)^{933!} \times (777)^{223!} \times (838)^{123!} \times (525)^{111!} \), we will analyze the unit digits of each base number and how they behave under exponentiation. ### Step 1: Identify the unit digits of the base numbers - The unit digit of \( 823 \) is \( 3 \). - The unit digit of \( 777 \) is \( 7 \). - The unit digit of \( 838 \) is \( 8 \). - The unit digit of \( 525 \) is \( 5 \). ### Step 2: Analyze the unit digit of each term 1. **For \( (823)^{933!} \)**: - The unit digit of powers of \( 3 \) cycles every 4: \( 3, 9, 7, 1 \). - To find the relevant power, calculate \( 933! \mod 4 \). - Since \( 933! \) is a factorial of a number greater than \( 4 \), it will be \( 0 \mod 4 \). - Therefore, the unit digit of \( (823)^{933!} \) is \( 1 \) (from the cycle). 2. **For \( (777)^{223!} \)**: - The unit digit of powers of \( 7 \) cycles every 4: \( 7, 9, 3, 1 \). - Calculate \( 223! \mod 4 \). - Since \( 223! \) is also a factorial of a number greater than \( 4 \), it will be \( 0 \mod 4 \). - Therefore, the unit digit of \( (777)^{223!} \) is \( 1 \). 3. **For \( (838)^{123!} \)**: - The unit digit of powers of \( 8 \) cycles every 4: \( 8, 4, 2, 6 \). - Calculate \( 123! \mod 4 \). - Since \( 123! \) is also a factorial of a number greater than \( 4 \), it will be \( 0 \mod 4 \). - Therefore, the unit digit of \( (838)^{123!} \) is \( 6 \). 4. **For \( (525)^{111!} \)**: - The unit digit of \( 5 \) raised to any positive integer power is always \( 5 \). - Therefore, the unit digit of \( (525)^{111!} \) is \( 5 \). ### Step 3: Combine the unit digits Now we combine the unit digits of all the terms: - From \( (823)^{933!} \) we have \( 1 \). - From \( (777)^{223!} \) we have \( 1 \). - From \( (838)^{123!} \) we have \( 6 \). - From \( (525)^{111!} \) we have \( 5 \). So we need to calculate: \[ 1 \times 1 \times 6 \times 5 \] ### Step 4: Calculate the final unit digit Calculating this step-by-step: 1. \( 1 \times 1 = 1 \) 2. \( 1 \times 6 = 6 \) 3. \( 6 \times 5 = 30 \) The unit digit of \( 30 \) is \( 0 \). ### Conclusion The unit digit of the expression \( (823)^{933!} \times (777)^{223!} \times (838)^{123!} \times (525)^{111!} \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

Find the unit digit of expression (823)^(933!)xx(777)^(223!) xx(838)^(123!)

Find the units digit of 8^(25)

Find the units digit of 8^25 .

Find the unit digit of (12)^(78)

Find the unit digit of (33)^(123)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. Find the unit digit of expression (599)^122 – (125)^625 – (144)^124 + ...

    Text Solution

    |

  2. Find the unit digit of expression (216) ^1000× (625) ^2000×(514) ^3000...

    Text Solution

    |

  3. Find the unit digit of expression (823)^(933!) × (777)^(223!) × (838)^...

    Text Solution

    |

  4. Find the unit digit of expression 125^813 * 553^3703 * 4537^828?

    Text Solution

    |

  5. Find the unit digit of expression (232)^(123!) × (353)^(124!) × (424)^...

    Text Solution

    |

  6. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  7. The last digit of the following expreesion is : (1!)^1 + (2!)^(2) + ...

    Text Solution

    |

  8. Find the unit digit in the expression :(1!)^(1!) + (2!)^(2!) + (3!)^(3...

    Text Solution

    |

  9. Find the unit digit in the expression : (3^57*6^41*7^63)

    Text Solution

    |

  10. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  11. If 100! divisible by 3^n then find the maximum value of n.

    Text Solution

    |

  12. If 122! is divisible by 6^n then find the maximum value of n.

    Text Solution

    |

  13. If 123! is divisible by 12^(n) then find the maximum value of n.

    Text Solution

    |

  14. If 133! is divisible by 7^(n) then find the maximum value of n.

    Text Solution

    |

  15. If 187! is divisible by 15^(n) then find the maximum value of n.

    Text Solution

    |

  16. Find no of zeros in 100 !

    Text Solution

    |

  17. Find the no. of zeros in expression : 1 × 2 × 3 × 4 .......... × 500

    Text Solution

    |

  18. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  19. Find the no. of zeros in expression : 1 × 3 × 5 × 7 .......... × 99

    Text Solution

    |

  20. Find the no. of zeros in the product of (5 xx 10 xx 25 xx 40 xx 50 xx ...

    Text Solution

    |