Home
Class 14
MATHS
Find the unit digit in the expression : ...

Find the unit digit in the expression : (3^57*6^41*7^63)

A

3

B

4

C

6

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit digit of the expression \(3^{57} \times 6^{41} \times 7^{63}\), we can break it down into three parts and find the unit digit of each part separately. ### Step 1: Find the unit digit of \(3^{57}\) The unit digits of the powers of 3 follow a pattern: - \(3^1 = 3\) (unit digit 3) - \(3^2 = 9\) (unit digit 9) - \(3^3 = 27\) (unit digit 7) - \(3^4 = 81\) (unit digit 1) This pattern repeats every 4 terms: 3, 9, 7, 1. To find the unit digit of \(3^{57}\), we calculate \(57 \mod 4\): \[ 57 \div 4 = 14 \quad \text{remainder } 1 \] So, \(57 \mod 4 = 1\). Therefore, the unit digit of \(3^{57}\) is the same as the unit digit of \(3^1\), which is **3**. ### Step 2: Find the unit digit of \(6^{41}\) The unit digit of any power of 6 is always 6: - \(6^1 = 6\) - \(6^2 = 36\) (unit digit 6) - \(6^3 = 216\) (unit digit 6) - ... Thus, the unit digit of \(6^{41}\) is **6**. ### Step 3: Find the unit digit of \(7^{63}\) The unit digits of the powers of 7 also follow a pattern: - \(7^1 = 7\) (unit digit 7) - \(7^2 = 49\) (unit digit 9) - \(7^3 = 343\) (unit digit 3) - \(7^4 = 2401\) (unit digit 1) This pattern repeats every 4 terms: 7, 9, 3, 1. To find the unit digit of \(7^{63}\), we calculate \(63 \mod 4\): \[ 63 \div 4 = 15 \quad \text{remainder } 3 \] So, \(63 \mod 4 = 3\). Therefore, the unit digit of \(7^{63}\) is the same as the unit digit of \(7^3\), which is **3**. ### Step 4: Combine the unit digits Now we can combine the unit digits we found: - Unit digit of \(3^{57}\) is **3** - Unit digit of \(6^{41}\) is **6** - Unit digit of \(7^{63}\) is **3** Now we multiply these unit digits together: \[ 3 \times 6 \times 3 \] Calculating step by step: 1. \(3 \times 6 = 18\) (unit digit 8) 2. \(8 \times 3 = 24\) (unit digit 4) Thus, the unit digit of the entire expression \(3^{57} \times 6^{41} \times 7^{63}\) is **4**. ### Final Answer The unit digit of the expression \(3^{57} \times 6^{41} \times 7^{63}\) is **4**. ---
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

Find the units' digit in the expression (515)^(31)+(525)^(90)?

Find the unit digit in the expression : (1!)^(1!) + (2!)^(2!) + (3!)^(3!) + ......................... + (100!)^(100!)

Find the unit digit of the expression 199^(2n)+144^(3n) , where n is a natural number.

The unit s digit in the expression 3^43xx6^43xx7^43 is: अभिव्यक्ति 3^43xx6^43xx7^43 में यूनिट अंक क्या होगा?

Find the units digit of the expression x=((-2a)/(4+a)-(sqrt(|a|-3)+sqrt(3-|a|))/(3-a))^(1993)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. The last digit of the following expreesion is : (1!)^1 + (2!)^(2) + ...

    Text Solution

    |

  2. Find the unit digit in the expression :(1!)^(1!) + (2!)^(2!) + (3!)^(3...

    Text Solution

    |

  3. Find the unit digit in the expression : (3^57*6^41*7^63)

    Text Solution

    |

  4. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  5. If 100! divisible by 3^n then find the maximum value of n.

    Text Solution

    |

  6. If 122! is divisible by 6^n then find the maximum value of n.

    Text Solution

    |

  7. If 123! is divisible by 12^(n) then find the maximum value of n.

    Text Solution

    |

  8. If 133! is divisible by 7^(n) then find the maximum value of n.

    Text Solution

    |

  9. If 187! is divisible by 15^(n) then find the maximum value of n.

    Text Solution

    |

  10. Find no of zeros in 100 !

    Text Solution

    |

  11. Find the no. of zeros in expression : 1 × 2 × 3 × 4 .......... × 500

    Text Solution

    |

  12. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  13. Find the no. of zeros in expression : 1 × 3 × 5 × 7 .......... × 99

    Text Solution

    |

  14. Find the no. of zeros in the product of (5 xx 10 xx 25 xx 40 xx 50 xx ...

    Text Solution

    |

  15. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  16. Find the no. of zeros in expression : 10 xx 20 xx 30 xx ……xx 1000.

    Text Solution

    |

  17. Find the no. of zeros in experssion : 1^(2) xx 2^(2) xx 3^(3) xx 4^(...

    Text Solution

    |

  18. The number of zeros at the end of ( 3^(123) -3^(122) - 3^(121) ) (2^(...

    Text Solution

    |

  19. Find the no. of zeros in expression : (8^(253) - 8^(252) - 8^(251))(...

    Text Solution

    |

  20. Find the remainder in expression– (1372 xx 1276)/(9)

    Text Solution

    |