Home
Class 14
MATHS
If 100! divisible by 3^n then find the m...

If 100! divisible by 3^n then find the maximum value of n.

A

48

B

44

C

40

D

33

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( n \) such that \( 100! \) is divisible by \( 3^n \), we need to determine how many times the prime number 3 appears in the factorization of \( 100! \). This can be calculated using the formula for finding the highest power of a prime \( p \) that divides \( n! \): \[ \text{Number of times } p \text{ divides } n! = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \ldots \] In this case, \( n = 100 \) and \( p = 3 \). We will calculate each term until \( p^k \) exceeds \( n \). ### Step 1: Calculate \( \left\lfloor \frac{100}{3} \right\rfloor \) \[ \left\lfloor \frac{100}{3} \right\rfloor = \left\lfloor 33.33 \right\rfloor = 33 \] ### Step 2: Calculate \( \left\lfloor \frac{100}{3^2} \right\rfloor \) \[ \left\lfloor \frac{100}{9} \right\rfloor = \left\lfloor 11.11 \right\rfloor = 11 \] ### Step 3: Calculate \( \left\lfloor \frac{100}{3^3} \right\rfloor \) \[ \left\lfloor \frac{100}{27} \right\rfloor = \left\lfloor 3.70 \right\rfloor = 3 \] ### Step 4: Calculate \( \left\lfloor \frac{100}{3^4} \right\rfloor \) \[ \left\lfloor \frac{100}{81} \right\rfloor = \left\lfloor 1.23 \right\rfloor = 1 \] ### Step 5: Calculate \( \left\lfloor \frac{100}{3^5} \right\rfloor \) \[ \left\lfloor \frac{100}{243} \right\rfloor = \left\lfloor 0.41 \right\rfloor = 0 \] Since \( 3^5 = 243 \) is greater than 100, we stop here. ### Step 6: Sum all the contributions Now, we add all the values we calculated: \[ 33 + 11 + 3 + 1 = 48 \] ### Conclusion Thus, the maximum value of \( n \) such that \( 100! \) is divisible by \( 3^n \) is: \[ \boxed{48} \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

If 122! is divisible by 6^n then find the maximum value of n.

If 133! is divisible by 7^(n) then find the maximum value of n.

If 123! is divisible by 12^(n) then find the maximum value of n.

If 187! is divisible by 15^(n) then find the maximum value of n.

If 44! is divisible by 3^(n) then maximum value of n

If 133 ! Is exactly divisible by 6^(n) find the max value of n.

If 133! Is exactly divisible by 6^(n) . Find the max. value of n.

If 9^(7)+7^(9) is divisible b 2^(n), then find the greatest value of n, wheren in N.

123 ! Is exactly divisible by 12 ^(n) . Find max. value of n.

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. Find the unit digit in the expression : (3^57*6^41*7^63)

    Text Solution

    |

  2. Find the units digit in the expansion of (44)^44+(55)^55+(88)^88.

    Text Solution

    |

  3. If 100! divisible by 3^n then find the maximum value of n.

    Text Solution

    |

  4. If 122! is divisible by 6^n then find the maximum value of n.

    Text Solution

    |

  5. If 123! is divisible by 12^(n) then find the maximum value of n.

    Text Solution

    |

  6. If 133! is divisible by 7^(n) then find the maximum value of n.

    Text Solution

    |

  7. If 187! is divisible by 15^(n) then find the maximum value of n.

    Text Solution

    |

  8. Find no of zeros in 100 !

    Text Solution

    |

  9. Find the no. of zeros in expression : 1 × 2 × 3 × 4 .......... × 500

    Text Solution

    |

  10. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  11. Find the no. of zeros in expression : 1 × 3 × 5 × 7 .......... × 99

    Text Solution

    |

  12. Find the no. of zeros in the product of (5 xx 10 xx 25 xx 40 xx 50 xx ...

    Text Solution

    |

  13. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  14. Find the no. of zeros in expression : 10 xx 20 xx 30 xx ……xx 1000.

    Text Solution

    |

  15. Find the no. of zeros in experssion : 1^(2) xx 2^(2) xx 3^(3) xx 4^(...

    Text Solution

    |

  16. The number of zeros at the end of ( 3^(123) -3^(122) - 3^(121) ) (2^(...

    Text Solution

    |

  17. Find the no. of zeros in expression : (8^(253) - 8^(252) - 8^(251))(...

    Text Solution

    |

  18. Find the remainder in expression– (1372 xx 1276)/(9)

    Text Solution

    |

  19. A, B & C started a business and invested in the ratio 7:6:5. Next Year...

    Text Solution

    |

  20. Find the remainder in expression– (1001 xx 1002 xx 1003 xx 1004)/(27...

    Text Solution

    |