Home
Class 14
MATHS
If 133! is divisible by 7^(n) then fi...

If 133! is divisible by ` 7^(n)` then find the maximum value of n.

A

21

B

22

C

23

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( n \) such that \( 133! \) is divisible by \( 7^n \), we can use the formula for finding the highest power of a prime \( p \) that divides \( n! \): \[ n_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor \] In our case, \( n = 133 \) and \( p = 7 \). ### Step-by-step Solution: 1. **Calculate \( \left\lfloor \frac{133}{7} \right\rfloor \)**: \[ \frac{133}{7} = 19 \] So, \( \left\lfloor \frac{133}{7} \right\rfloor = 19 \). 2. **Calculate \( \left\lfloor \frac{133}{7^2} \right\rfloor \)**: \[ 7^2 = 49 \quad \text{and} \quad \frac{133}{49} \approx 2.714 \] So, \( \left\lfloor \frac{133}{49} \right\rfloor = 2 \). 3. **Calculate \( \left\lfloor \frac{133}{7^3} \right\rfloor \)**: \[ 7^3 = 343 \quad \text{and} \quad \frac{133}{343} < 1 \] So, \( \left\lfloor \frac{133}{343} \right\rfloor = 0 \). 4. **Sum the results**: Now, we add all the values we calculated: \[ n = 19 + 2 + 0 = 21 \] Thus, the maximum value of \( n \) such that \( 133! \) is divisible by \( 7^n \) is \( 21 \). ### Final Answer: \[ n = 21 \]
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

If 123! is divisible by 12^(n) then find the maximum value of n.

If 187! is divisible by 15^(n) then find the maximum value of n.

If 122! is divisible by 6^n then find the maximum value of n.

If 100! divisible by 3^n then find the maximum value of n.

If 133 ! Is exactly divisible by 6^(n) find the max value of n.

If 133! Is exactly divisible by 6^(n) . Find the max. value of n.

If 44! is divisible by 3^(n) then maximum value of n

If 9^(7)+7^(9) is divisible b 2^(n), then find the greatest value of n, wheren in N.

123 ! Is exactly divisible by 12 ^(n) . Find max. value of n.

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. If 122! is divisible by 6^n then find the maximum value of n.

    Text Solution

    |

  2. If 123! is divisible by 12^(n) then find the maximum value of n.

    Text Solution

    |

  3. If 133! is divisible by 7^(n) then find the maximum value of n.

    Text Solution

    |

  4. If 187! is divisible by 15^(n) then find the maximum value of n.

    Text Solution

    |

  5. Find no of zeros in 100 !

    Text Solution

    |

  6. Find the no. of zeros in expression : 1 × 2 × 3 × 4 .......... × 500

    Text Solution

    |

  7. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  8. Find the no. of zeros in expression : 1 × 3 × 5 × 7 .......... × 99

    Text Solution

    |

  9. Find the no. of zeros in the product of (5 xx 10 xx 25 xx 40 xx 50 xx ...

    Text Solution

    |

  10. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  11. Find the no. of zeros in expression : 10 xx 20 xx 30 xx ……xx 1000.

    Text Solution

    |

  12. Find the no. of zeros in experssion : 1^(2) xx 2^(2) xx 3^(3) xx 4^(...

    Text Solution

    |

  13. The number of zeros at the end of ( 3^(123) -3^(122) - 3^(121) ) (2^(...

    Text Solution

    |

  14. Find the no. of zeros in expression : (8^(253) - 8^(252) - 8^(251))(...

    Text Solution

    |

  15. Find the remainder in expression– (1372 xx 1276)/(9)

    Text Solution

    |

  16. A, B & C started a business and invested in the ratio 7:6:5. Next Year...

    Text Solution

    |

  17. Find the remainder in expression– (1001 xx 1002 xx 1003 xx 1004)/(27...

    Text Solution

    |

  18. Find the remainder in expression– (1234 xx 12345 )/(9)

    Text Solution

    |

  19. Find the remainder in expression– (4851 xx 1869 xx 4871)/(9)

    Text Solution

    |

  20. Find the remainder in expression– (1235 xx 1237 xx 1239)/(12)

    Text Solution

    |