Home
Class 14
MATHS
Find the no. of zeros in experssion : ...

Find the no. of zeros in experssion :
`1^(2) xx 2^(2) xx 3^(3) xx 4^(4) xx ……..xx100^(100)`

A

1200

B

1300

C

250

D

1050

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of zeros in the expression \(1^1 \times 2^2 \times 3^3 \times 4^4 \times \ldots \times 100^{100}\), we need to determine how many times the factor 10 appears in the product. Since \(10 = 2 \times 5\), we will find the number of factors of 2 and 5 in the expression and the limiting factor will determine the number of zeros. ### Step 1: Count the factors of 5 To find the number of factors of 5 in the expression, we will consider each term \(n^n\) for \(n = 1\) to \(100\). The number of factors of 5 in \(n^n\) is given by \(n \times \text{(number of factors of 5 in n)}\). The number of factors of 5 in \(n\) can be calculated using the formula: \[ \text{Number of factors of 5 in } n = \left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{25} \right\rfloor + \left\lfloor \frac{n}{125} \right\rfloor + \ldots \] Let's calculate it for each \(n\) from 1 to 100. - For \(n = 1\): \(0\) - For \(n = 2\): \(0\) - For \(n = 3\): \(0\) - For \(n = 4\): \(0\) - For \(n = 5\): \(1\) - For \(n = 6\): \(1\) - For \(n = 7\): \(1\) - For \(n = 8\): \(1\) - For \(n = 9\): \(1\) - For \(n = 10\): \(2\) - For \(n = 11\): \(2\) - For \(n = 12\): \(2\) - For \(n = 13\): \(2\) - For \(n = 14\): \(2\) - For \(n = 15\): \(3\) - For \(n = 16\): \(3\) - For \(n = 17\): \(3\) - For \(n = 18\): \(3\) - For \(n = 19\): \(3\) - For \(n = 20\): \(4\) - For \(n = 21\): \(4\) - For \(n = 22\): \(4\) - For \(n = 23\): \(4\) - For \(n = 24\): \(4\) - For \(n = 25\): \(6\) - For \(n = 26\): \(6\) - For \(n = 27\): \(6\) - For \(n = 28\): \(6\) - For \(n = 29\): \(6\) - For \(n = 30\): \(7\) - For \(n = 31\): \(7\) - For \(n = 32\): \(7\) - For \(n = 33\): \(7\) - For \(n = 34\): \(7\) - For \(n = 35\): \(8\) - For \(n = 36\): \(8\) - For \(n = 37\): \(8\) - For \(n = 38\): \(8\) - For \(n = 39\): \(8\) - For \(n = 40\): \(9\) - For \(n = 41\): \(9\) - For \(n = 42\): \(9\) - For \(n = 43\): \(9\) - For \(n = 44\): \(9\) - For \(n = 45\): \(10\) - For \(n = 46\): \(10\) - For \(n = 47\): \(10\) - For \(n = 48\): \(10\) - For \(n = 49\): \(12\) - For \(n = 50\): \(12\) - For \(n = 51\): \(12\) - For \(n = 52\): \(12\) - For \(n = 53\): \(12\) - For \(n = 54\): \(12\) - For \(n = 55\): \(13\) - For \(n = 56\): \(13\) - For \(n = 57\): \(13\) - For \(n = 58\): \(13\) - For \(n = 59\): \(13\) - For \(n = 60\): \(14\) - For \(n = 61\): \(14\) - For \(n = 62\): \(14\) - For \(n = 63\): \(14\) - For \(n = 64\): \(14\) - For \(n = 65\): \(15\) - For \(n = 66\): \(15\) - For \(n = 67\): \(15\) - For \(n = 68\): \(15\) - For \(n = 69\): \(15\) - For \(n = 70\): \(16\) - For \(n = 71\): \(16\) - For \(n = 72\): \(16\) - For \(n = 73\): \(16\) - For \(n = 74\): \(16\) - For \(n = 75\): \(17\) - For \(n = 76\): \(17\) - For \(n = 77\): \(17\) - For \(n = 78\): \(17\) - For \(n = 79\): \(17\) - For \(n = 80\): \(18\) - For \(n = 81\): \(18\) - For \(n = 82\): \(18\) - For \(n = 83\): \(18\) - For \(n = 84\): \(18\) - For \(n = 85\): \(19\) - For \(n = 86\): \(19\) - For \(n = 87\): \(19\) - For \(n = 88\): \(19\) - For \(n = 89\): \(19\) - For \(n = 90\): \(20\) - For \(n = 91\): \(20\) - For \(n = 92\): \(20\) - For \(n = 93\): \(20\) - For \(n = 94\): \(20\) - For \(n = 95\): \(21\) - For \(n = 96\): \(21\) - For \(n = 97\): \(21\) - For \(n = 98\): \(21\) - For \(n = 99\): \(21\) - For \(n = 100\): \(24\) Now, we sum these values for \(n = 1\) to \(100\): \[ \text{Total factors of 5} = 0 + 0 + 0 + 0 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 4 + 4 + 4 + 4 + 4 + 6 + 6 + 6 + 6 + 6 + 7 + 7 + 7 + 7 + 7 + 8 + 8 + 8 + 8 + 8 + 9 + 9 + 9 + 9 + 9 + 10 + 10 + 10 + 10 + 12 + 12 + 12 + 12 + 12 + 12 + 13 + 13 + 13 + 13 + 13 + 14 + 14 + 14 + 14 + 14 + 15 + 15 + 15 + 15 + 15 + 16 + 16 + 16 + 16 + 16 + 17 + 17 + 17 + 17 + 17 + 18 + 18 + 18 + 18 + 18 + 19 + 19 + 19 + 19 + 19 + 20 + 20 + 20 + 20 + 20 + 21 + 21 + 21 + 21 + 21 + 24 = 124 \] ### Step 2: Count the factors of 2 Now we will count the factors of 2 in the same way. The number of factors of 2 in \(n^n\) is given by \(n \times \text{(number of factors of 2 in n)}\). Using the same formula for counting factors of 2: \[ \text{Number of factors of 2 in } n = \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{n}{4} \right\rfloor + \left\lfloor \frac{n}{8} \right\rfloor + \left\lfloor \frac{n}{16} \right\rfloor + \left\lfloor \frac{n}{32} \right\rfloor + \left\lfloor \frac{n}{64} \right\rfloor + \ldots \] Calculating for \(n = 1\) to \(100\): - For \(n = 1\): \(0\) - For \(n = 2\): \(1\) - For \(n = 3\): \(1\) - For \(n = 4\): \(3\) - For \(n = 5\): \(3\) - For \(n = 6\): \(4\) - For \(n = 7\): \(4\) - For \(n = 8\): \(7\) - For \(n = 9\): \(7\) - For \(n = 10\): \(8\) - For \(n = 11\): \(8\) - For \(n = 12\): \(10\) - For \(n = 13\): \(10\) - For \(n = 14\): \(11\) - For \(n = 15\): \(11\) - For \(n = 16\): \(15\) - For \(n = 17\): \(15\) - For \(n = 18\): \(17\) - For \(n = 19\): \(17\) - For \(n = 20\): \(22\) - For \(n = 21\): \(22\) - For \(n = 22\): \(24\) - For \(n = 23\): \(24\) - For \(n = 24\): \(29\) - For \(n = 25\): \(29\) - For \(n = 26\): \(31\) - For \(n = 27\): \(31\) - For \(n = 28\): \(36\) - For \(n = 29\): \(36\) - For \(n = 30\): \(41\) - For \(n = 31\): \(41\) - For \(n = 32\): \(47\) - For \(n = 33\): \(47\) - For \(n = 34\): \(52\) - For \(n = 35\): \(52\) - For \(n = 36\): \(59\) - For \(n = 37\): \(59\) - For \(n = 38\): \(64\) - For \(n = 39\): \(64\) - For \(n = 40\): \(71\) - For \(n = 41\): \(71\) - For \(n = 42\): \(78\) - For \(n = 43\): \(78\) - For \(n = 44\): \(85\) - For \(n = 45\): \(85\) - For \(n = 46\): \(92\) - For \(n = 47\): \(92\) - For \(n = 48\): \(101\) - For \(n = 49\): \(101\) - For \(n = 50\): \(110\) - For \(n = 51\): \(110\) - For \(n = 52\): \(119\) - For \(n = 53\): \(119\) - For \(n = 54\): \(128\) - For \(n = 55\): \(128\) - For \(n = 56\): \(137\) - For \(n = 57\): \(137\) - For \(n = 58\): \(146\) - For \(n = 59\): \(146\) - For \(n = 60\): \(156\) - For \(n = 61\): \(156\) - For \(n = 62\): \(165\) - For \(n = 63\): \(165\) - For \(n = 64\): \(175\) - For \(n = 65\): \(175\) - For \(n = 66\): \(184\) - For \(n = 67\): \(184\) - For \(n = 68\): \(193\) - For \(n = 69\): \(193\) - For \(n = 70\): \(203\) - For \(n = 71\): \(203\) - For \(n = 72\): \(213\) - For \(n = 73\): \(213\) - For \(n = 74\): \(223\) - For \(n = 75\): \(223\) - For \(n = 76\): \(233\) - For \(n = 77\): \(233\) - For \(n = 78\): \(243\) - For \(n = 79\): \(243\) - For \(n = 80\): \(253\) - For \(n = 81\): \(253\) - For \(n = 82\): \(263\) - For \(n = 83\): \(263\) - For \(n = 84\): \(273\) - For \(n = 85\): \(273\) - For \(n = 86\): \(283\) - For \(n = 87\): \(283\) - For \(n = 88\): \(293\) - For \(n = 89\): \(293\) - For \(n = 90\): \(303\) - For \(n = 91\): \(303\) - For \(n = 92\): \(313\) - For \(n = 93\): \(313\) - For \(n = 94\): \(323\) - For \(n = 95\): \(323\) - For \(n = 96\): \(333\) - For \(n = 97\): \(333\) - For \(n = 98\): \(343\) - For \(n = 99\): \(343\) - For \(n = 100\): \(353\) Now, we sum these values for \(n = 1\) to \(100\): \[ \text{Total factors of 2} = 0 + 1 + 1 + 3 + 3 + 4 + 4 + 7 + 7 + 8 + 8 + 10 + 10 + 11 + 11 + 15 + 15 + 17 + 17 + 22 + 22 + 24 + 24 + 29 + 29 + 31 + 31 + 36 + 36 + 41 + 41 + 47 + 47 + 52 + 52 + 59 + 59 + 64 + 64 + 71 + 71 + 78 + 78 + 85 + 85 + 92 + 92 + 101 + 101 + 110 + 110 + 119 + 119 + 128 + 128 + 137 + 137 + 146 + 146 + 156 + 156 + 165 + 165 + 175 + 175 + 184 + 184 + 193 + 193 + 203 + 203 + 213 + 213 + 223 + 223 + 233 + 233 + 243 + 243 + 253 + 253 + 263 + 263 + 273 + 273 + 283 + 283 + 293 + 293 + 303 + 303 + 313 + 313 + 323 + 323 + 333 + 333 + 343 + 343 + 353 = 1287 \] ### Step 3: Determine the number of zeros The number of zeros at the end of the product is determined by the minimum of the total factors of 2 and the total factors of 5: \[ \text{Number of zeros} = \min(1287, 124) = 124 \] Thus, the number of zeros in the expression \(1^1 \times 2^2 \times 3^3 \times 4^4 \times \ldots \times 100^{100}\) is **124**.
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MULTIPLE CHOICE QUESTIONS |225 Videos
  • MOCK TEST II

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise MCQ|100 Videos
  • PARTNERSHIP

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise Questions|26 Videos

Similar Questions

Explore conceptually related problems

Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

Which of the following is the number of zeroes in the product: 1^(1)xx2^(2)xx3^(3)xx4^(4)xx99^(99)xx100^(100)

Find the number of zeroes in the product 1^(1)xx2^(2)xx3^(3)xx4^(4)xx5^(5)xx6^(6)xx…xx49^(49)

Find the number of zeroes in: 100^(1)xx99^(2)xx98^(3)xx97^(4)xx….xx1^(100)

The last digit of the expression 4 xx 9^2 xx 4^3 xx 9^4 xx 4^5 xx 9^6 xx …..xx 4^(99) xx 9^(100) is:

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-NUMBER SYSTEM -MULTIPLE CHOICE QUESTIONS
  1. Find the no. of zeros in expression : (1 xx 3 xx 5 …….. 99) xx 100

    Text Solution

    |

  2. Find the no. of zeros in expression : 10 xx 20 xx 30 xx ……xx 1000.

    Text Solution

    |

  3. Find the no. of zeros in experssion : 1^(2) xx 2^(2) xx 3^(3) xx 4^(...

    Text Solution

    |

  4. The number of zeros at the end of ( 3^(123) -3^(122) - 3^(121) ) (2^(...

    Text Solution

    |

  5. Find the no. of zeros in expression : (8^(253) - 8^(252) - 8^(251))(...

    Text Solution

    |

  6. Find the remainder in expression– (1372 xx 1276)/(9)

    Text Solution

    |

  7. A, B & C started a business and invested in the ratio 7:6:5. Next Year...

    Text Solution

    |

  8. Find the remainder in expression– (1001 xx 1002 xx 1003 xx 1004)/(27...

    Text Solution

    |

  9. Find the remainder in expression– (1234 xx 12345 )/(9)

    Text Solution

    |

  10. Find the remainder in expression– (4851 xx 1869 xx 4871)/(9)

    Text Solution

    |

  11. Find the remainder in expression– (1235 xx 1237 xx 1239)/(12)

    Text Solution

    |

  12. Find the remainder in expression– (660 xx 661 xx 662)/(17)

    Text Solution

    |

  13. Find the remainder in expression– (2581 xx (2862)^(2) xx (2873)^(3))...

    Text Solution

    |

  14. Find the remainder in expression– (1! + 2! + 3! + ……. 100 !)/(5)

    Text Solution

    |

  15. Find the remainder in expression– (1! + 2! + 3! + …..10!)/(7)

    Text Solution

    |

  16. Find the remainder in expression - (1!^(2) + 2!^(2) + ……. 100!^(2))/...

    Text Solution

    |

  17. What is the remainder when ((67^67)+67) is divided by 68. (A)1 (B) 63 ...

    Text Solution

    |

  18. Find the remainder in expression– (2581 xx (2862)^(2) xx (2873)^(3))...

    Text Solution

    |

  19. Find the remainder when (17)^(23) + (29)^(23) is divided by 23.

    Text Solution

    |

  20. Find the remainder when (27)^(35) is divided by 26

    Text Solution

    |