Home
Class 14
MATHS
If a^(4) + a^(2)b^(2) + b^(4) = 12, a^(2...

If `a^(4) + a^(2)b^(2) + b^(4) = 12, a^(2) + ab+ b^(2)=4`, find ab

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( a^4 + a^2b^2 + b^4 = 12 \) and \( a^2 + ab + b^2 = 4 \), we will use substitution and algebraic manipulation. ### Step 1: Let \( x = ab \) We know that \( a^2 + b^2 = (a + b)^2 - 2ab \). We can express \( a^2 + b^2 \) in terms of \( x \). ### Step 2: Rewrite \( a^2 + b^2 \) From the second equation \( a^2 + ab + b^2 = 4 \), we can express \( a^2 + b^2 \) as: \[ a^2 + b^2 = 4 - ab = 4 - x \] ### Step 3: Substitute into the first equation Now, we can express \( a^4 + b^4 \) using \( a^2 + b^2 \) and \( ab \): \[ a^4 + b^4 = (a^2 + b^2)^2 - 2(ab)^2 \] Substituting \( a^2 + b^2 = 4 - x \): \[ a^4 + b^4 = (4 - x)^2 - 2x^2 \] ### Step 4: Expand and simplify Expanding \( (4 - x)^2 \): \[ (4 - x)^2 = 16 - 8x + x^2 \] Thus, \[ a^4 + b^4 = 16 - 8x + x^2 - 2x^2 = 16 - 8x - x^2 \] ### Step 5: Substitute into the first equation Now we substitute this back into the first equation: \[ a^4 + a^2b^2 + b^4 = 12 \] We know \( a^2b^2 = (ab)^2 = x^2 \), so: \[ 16 - 8x - x^2 + x^2 = 12 \] This simplifies to: \[ 16 - 8x = 12 \] ### Step 6: Solve for \( x \) Rearranging gives: \[ -8x = 12 - 16 \] \[ -8x = -4 \] \[ x = \frac{-4}{-8} = \frac{1}{2} \] ### Conclusion Thus, the value of \( ab \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) + b^(2) + ab= 4 find ab

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

If a^(2)+b^(2)=25 and ab=12 find a^(2)-b^(2)

Find (a^(4) +b^(4))/(a^(2)-ab sqrt2 + b^(2)) , if x= a^(2) + b^(2) and y= ab sqrt2

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) 4x ^(4) + 12 x ^(3) + 9x ^(2)

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. Which one of the following is not a factor of this polynomial x^(8) + ...

    Text Solution

    |

  2. Find (a^(4) +b^(4))/(a^(2)-ab sqrt2 + b^(2)), if x= a^(2) + b^(2) and ...

    Text Solution

    |

  3. If a^(4) + a^(2)b^(2) + b^(4) = 12, a^(2) + ab+ b^(2)=4, find ab

    Text Solution

    |

  4. If a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) + b^(2) + ab= 4 find ab

    Text Solution

    |

  5. If x^(4) + y^(4)=19 and x+y=1 find x^(2)y^(2)-2xy

    Text Solution

    |

  6. Factor of x^(2)-x^(26)-x^(23) +1

    Text Solution

    |

  7. If (x-2) is a factor of polynomial x^(2) + kx+4. Find the value of k

    Text Solution

    |

  8. If x^(3) +ax^(2) + 2x+3 is exactly divisible by (x+1). Find the value ...

    Text Solution

    |

  9. If (x+1) and (x-1) are factor of ax^(3) + bx^(2) + 3x+5. Find the valu...

    Text Solution

    |

  10. Find (x+y+z)^(3)-(x+y-z)^(3)-(y+z-x)^(3) -(z + x-y)^(3)

    Text Solution

    |

  11. (x^(2)-7x+15)/(x-3), find remainder

    Text Solution

    |

  12. If x^(2)+x+4 is divided by (x-1), find the remainder

    Text Solution

    |

  13. If x^(11) +3 is divided by (x+1), find the remainder

    Text Solution

    |

  14. If x^(51) +51 is divided by x+1 , then the remainder is

    Text Solution

    |

  15. If x^(40)+3 is dividied by x^(4)+1, find the remainder

    Text Solution

    |

  16. x^(35) +3 is divided by x^(5)+1, find remainder

    Text Solution

    |

  17. If x^(2) + bx + 7 is divided by (x-1) leaves remainder 12 find b?

    Text Solution

    |

  18. If 2x^(2) +kx + 8 is divided by (x+2) leaves remainder 3k find k =?

    Text Solution

    |

  19. x^(2) + 4x + k is divided by (x-2) leaves remainder 2x, find k

    Text Solution

    |

  20. Find the HCF of the polynomial 30(x^(2)-3x+2) and 50 (x^(2)-2x +1)

    Text Solution

    |