Home
Class 14
MATHS
If a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) +...

If `a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) + b^(2) + ab= 4` find ab

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( ab \) given the equations: 1. \( a^4 + a^2b^2 + b^4 = 8 \) 2. \( a^2 + b^2 + ab = 4 \) We can approach this step by step. ### Step 1: Rewrite the first equation We can express \( a^4 + b^4 + a^2b^2 \) in terms of \( a^2 + b^2 \) and \( ab \). We know that: \[ a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \] Thus, we can rewrite the first equation as: \[ (a^2 + b^2)^2 - 2a^2b^2 + a^2b^2 = 8 \] This simplifies to: \[ (a^2 + b^2)^2 - a^2b^2 = 8 \] ### Step 2: Substitute \( a^2 + b^2 \) Let \( x = a^2 + b^2 \) and \( y = ab \). From the second equation, we have: \[ x + y = 4 \quad \text{(Equation 1)} \] ### Step 3: Substitute into the first equation Now, substituting \( x \) and \( y \) into the modified first equation gives us: \[ x^2 - y^2 = 8 \] This can be factored as: \[ (x - y)(x + y) = 8 \] ### Step 4: Substitute \( y \) from Equation 1 From Equation 1, we know \( y = 4 - x \). Substituting this into the factored equation: \[ (x - (4 - x))(x + (4 - x)) = 8 \] This simplifies to: \[ (2x - 4)(4) = 8 \] ### Step 5: Solve for \( x \) Now, divide both sides by 4: \[ 2x - 4 = 2 \] Adding 4 to both sides gives: \[ 2x = 6 \] Dividing by 2: \[ x = 3 \] ### Step 6: Find \( y \) Now, substitute \( x \) back into Equation 1 to find \( y \): \[ 3 + y = 4 \] Thus: \[ y = 4 - 3 = 1 \] ### Conclusion Since \( y = ab \), we have: \[ ab = 1 \] ### Final Answer The value of \( ab \) is \( \boxed{1} \). ---
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If a^(4) + a^(2)b^(2) + b^(4) = 12, a^(2) + ab+ b^(2)=4 , find ab

( a - b) ^(2) + 2ab = ? A. a^(2) - b^(2) B. a^(2) + b^(2) C. a^(2) - 4ab + b^(2) D. a^(2) - 2ab + b^(2)

Factorise the using the identity a ^(2) - 2 ab + b ^(2) = (a -b) ^(2). 4a ^(2) - 4 ab + b ^(2)

Find (a^(4) +b^(4))/(a^(2)-ab sqrt2 + b^(2)) , if x= a^(2) + b^(2) and y= ab sqrt2

If M(a, b)=a^(2)+b^(2)+ab,N(a, b)=a^(2)+b^(2)-ab . Find the value of M(7, N(9, 4)) .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. Find (a^(4) +b^(4))/(a^(2)-ab sqrt2 + b^(2)), if x= a^(2) + b^(2) and ...

    Text Solution

    |

  2. If a^(4) + a^(2)b^(2) + b^(4) = 12, a^(2) + ab+ b^(2)=4, find ab

    Text Solution

    |

  3. If a^(4) + a^(2) b^(2) +b^(4)=8, a^(2) + b^(2) + ab= 4 find ab

    Text Solution

    |

  4. If x^(4) + y^(4)=19 and x+y=1 find x^(2)y^(2)-2xy

    Text Solution

    |

  5. Factor of x^(2)-x^(26)-x^(23) +1

    Text Solution

    |

  6. If (x-2) is a factor of polynomial x^(2) + kx+4. Find the value of k

    Text Solution

    |

  7. If x^(3) +ax^(2) + 2x+3 is exactly divisible by (x+1). Find the value ...

    Text Solution

    |

  8. If (x+1) and (x-1) are factor of ax^(3) + bx^(2) + 3x+5. Find the valu...

    Text Solution

    |

  9. Find (x+y+z)^(3)-(x+y-z)^(3)-(y+z-x)^(3) -(z + x-y)^(3)

    Text Solution

    |

  10. (x^(2)-7x+15)/(x-3), find remainder

    Text Solution

    |

  11. If x^(2)+x+4 is divided by (x-1), find the remainder

    Text Solution

    |

  12. If x^(11) +3 is divided by (x+1), find the remainder

    Text Solution

    |

  13. If x^(51) +51 is divided by x+1 , then the remainder is

    Text Solution

    |

  14. If x^(40)+3 is dividied by x^(4)+1, find the remainder

    Text Solution

    |

  15. x^(35) +3 is divided by x^(5)+1, find remainder

    Text Solution

    |

  16. If x^(2) + bx + 7 is divided by (x-1) leaves remainder 12 find b?

    Text Solution

    |

  17. If 2x^(2) +kx + 8 is divided by (x+2) leaves remainder 3k find k =?

    Text Solution

    |

  18. x^(2) + 4x + k is divided by (x-2) leaves remainder 2x, find k

    Text Solution

    |

  19. Find the HCF of the polynomial 30(x^(2)-3x+2) and 50 (x^(2)-2x +1)

    Text Solution

    |

  20. Find the HCF of f(x)=33 (2x + 3)^(2) (3x-4)^(3) (4x-5)^(4) and g(x)= 2...

    Text Solution

    |