Home
Class 14
MATHS
a +b+c= 3, (1)/(a) + (1)/(b) + (1)/(c )=...

`a +b+c= 3, (1)/(a) + (1)/(b) + (1)/(c )=2`
`a^(2) + b^(2) + c^(2)=6` find abc=?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. \( a + b + c = 3 \) (Equation 1) 2. \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 2 \) (Equation 2) 3. \( a^2 + b^2 + c^2 = 6 \) (Equation 3) We need to find the value of \( abc \). ### Step 1: Rewrite Equation 2 We can rewrite Equation 2 in terms of \( a, b, c \): \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc} = 2 \] From this, we can express: \[ bc + ac + ab = 2abc \quad \text{(Equation 4)} \] ### Step 2: Use the identity for squares We know the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting the values from Equations 1 and 3: \[ 3^2 = 6 + 2(ab + ac + bc) \] This simplifies to: \[ 9 = 6 + 2(ab + ac + bc) \] Subtracting 6 from both sides gives: \[ 3 = 2(ab + ac + bc) \] Thus: \[ ab + ac + bc = \frac{3}{2} \quad \text{(Equation 5)} \] ### Step 3: Substitute Equation 5 into Equation 4 Now we can substitute Equation 5 into Equation 4: \[ \frac{3}{2} = 2abc \] Dividing both sides by 2 gives: \[ abc = \frac{3}{4} \] ### Final Answer Thus, the value of \( abc \) is: \[ \boxed{\frac{3}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If (1)/(a)+(1)/(b)+(1)/(c)=1 and abc=2 then find ab^(2)c^(2)+a^(2)bc^(2)+a^(2)b^(2)c is

if a+b+c=6 and (1)/(a)+(1)/(b)+(1)/(c)=(3)/(2) then find (a)/(b)+(a)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (a)/(1+a) + (b)/(1+b) + (c )/(1+c) = ?

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If the ratio of roots of equation lx^(2) + nx + n= 0 is p: q then find...

    Text Solution

    |

  2. If a+b+c=6, a^(2) +b^(2)+ c^(2)=16, find ab+bc +ca= ?

    Text Solution

    |

  3. a +b+c= 3, (1)/(a) + (1)/(b) + (1)/(c )=2 a^(2) + b^(2) + c^(2)=6 fi...

    Text Solution

    |

  4. If a^(3) + b^(3)=0 find a+b=

    Text Solution

    |

  5. If a^(4) + b^(4) = a^(2) b^(2) find a^(6) + b^(6)

    Text Solution

    |

  6. If (p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )...

    Text Solution

    |

  7. Given x+y= 2z, then (x)/(x-z) + (z)/(y-z)= ?

    Text Solution

    |

  8. Given x+y= 2z, then (x)/(x-z) + (z)/(y-z) =?

    Text Solution

    |

  9. If x+1/y =1 and y + 1/z =1 then find the value of z + 1/x

    Text Solution

    |

  10. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find xyz= ?

    Text Solution

    |

  11. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/...

    Text Solution

    |

  12. (x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz=...

    Text Solution

    |

  13. If (a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1 and (b+ c ne a)

    Text Solution

    |

  14. Given pq + qr + rp = 0 find (1)/(p^(2)-qr) + (1)/(q^(2) -rp) + (1)...

    Text Solution

    |

  15. Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp...

    Text Solution

    |

  16. If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x), then :

    Text Solution

    |

  17. If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive...

    Text Solution

    |

  18. If (x+ y)^(2) = 21 + z^(2), (y+z)^(2)= 32 + x^(2) and (z+ x)^(2) = 28+...

    Text Solution

    |

  19. If x+ (1)/(x)=2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  20. If x+ (1)/(x)=2, find x^(112)- (1)/(x^(112))= ?

    Text Solution

    |