Home
Class 14
MATHS
If a^(4) + b^(4) = a^(2) b^(2) find a^(6...

If `a^(4) + b^(4) = a^(2) b^(2)` find `a^(6) + b^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^4 + b^4 = a^2 b^2 \) and find \( a^6 + b^6 \), we can follow these steps: ### Step 1: Rewrite the Given Equation We start with the equation: \[ a^4 + b^4 = a^2 b^2 \] ### Step 2: Add \( 2a^2b^2 \) to Both Sides To manipulate the equation, we add \( 2a^2b^2 \) to both sides: \[ a^4 + b^4 + 2a^2b^2 = a^2b^2 + 2a^2b^2 \] This simplifies to: \[ a^4 + b^4 + 2a^2b^2 = 3a^2b^2 \] ### Step 3: Factor the Left Side The left side can be factored as: \[ (a^2 + b^2)^2 = 3a^2b^2 \] ### Step 4: Take the Square Root Taking the square root of both sides gives us: \[ a^2 + b^2 = \sqrt{3}ab \] ### Step 5: Find \( a^6 + b^6 \) We can use the identity for the sum of cubes: \[ a^6 + b^6 = (a^2 + b^2)(a^4 - a^2b^2 + b^4) \] From our earlier steps, we know: - \( a^2 + b^2 = \sqrt{3}ab \) - We also have \( a^4 + b^4 = a^2b^2 \), thus \( a^4 - a^2b^2 + b^4 = (a^4 + b^4) - a^2b^2 = 0 \) ### Step 6: Substitute Values Substituting these values into the identity: \[ a^6 + b^6 = (a^2 + b^2)(a^4 - a^2b^2 + b^4) = (\sqrt{3}ab)(0) = 0 \] ### Final Result Thus, we conclude that: \[ a^6 + b^6 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) = c^(2) then find (a^(6) + b^(6)- c^(6))/(a^(2) b^(2) c^(2))= ?

The product of 4a^(2),-6b^(2) and 3a^(2)b^(2) is

If a-b=4 and a+b=6 then find a^(2)+b^(2) and ab

If sqrt((125 a^(6) b^(4) c^(2))/(5a^(4) b^(2))) = x, " then find " (x^(2))/(abc)

If a + b = 6 and a^(2) - b^(2) = 24 , then a - b = 4 .

If a and b are distinct positive primes such that a^(6)b^(-4)3=a^(x)b^(2y), find x and y.

If a^4+b^4=a^2b^2 then a^6+b^6=

Find the sum of the expressions - 3a ^(2) + 2 ab - 4b^(2) and - 6a ^(2) + 4b.

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. a +b+c= 3, (1)/(a) + (1)/(b) + (1)/(c )=2 a^(2) + b^(2) + c^(2)=6 fi...

    Text Solution

    |

  2. If a^(3) + b^(3)=0 find a+b=

    Text Solution

    |

  3. If a^(4) + b^(4) = a^(2) b^(2) find a^(6) + b^(6)

    Text Solution

    |

  4. If (p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )...

    Text Solution

    |

  5. Given x+y= 2z, then (x)/(x-z) + (z)/(y-z)= ?

    Text Solution

    |

  6. Given x+y= 2z, then (x)/(x-z) + (z)/(y-z) =?

    Text Solution

    |

  7. If x+1/y =1 and y + 1/z =1 then find the value of z + 1/x

    Text Solution

    |

  8. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find xyz= ?

    Text Solution

    |

  9. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/...

    Text Solution

    |

  10. (x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz=...

    Text Solution

    |

  11. If (a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1 and (b+ c ne a)

    Text Solution

    |

  12. Given pq + qr + rp = 0 find (1)/(p^(2)-qr) + (1)/(q^(2) -rp) + (1)...

    Text Solution

    |

  13. Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp...

    Text Solution

    |

  14. If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x), then :

    Text Solution

    |

  15. If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive...

    Text Solution

    |

  16. If (x+ y)^(2) = 21 + z^(2), (y+z)^(2)= 32 + x^(2) and (z+ x)^(2) = 28+...

    Text Solution

    |

  17. If x+ (1)/(x)=2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  18. If x+ (1)/(x)=2, find x^(112)- (1)/(x^(112))= ?

    Text Solution

    |

  19. If m+ (1)/(m-2)=4, find (m-2)^(111) + (1)/((m-2)^(111))=?

    Text Solution

    |

  20. If m+ (1)/(m-2)=4, find m^(2) + m+1=?

    Text Solution

    |