Home
Class 14
MATHS
If (p)/(a) + (q)/(b) + (r )/(c )=1 " & "...

If `(p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )=0` find `(p^(2))/(a^(2)) + (q^(2))/(b^(2)) + (r^(2))/(c^(2))`= ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define Variables Let: \[ X = \frac{p}{a}, \quad Y = \frac{q}{b}, \quad Z = \frac{r}{c} \] From the problem statement, we know: \[ X + Y + Z = 1 \] ### Step 2: Use the Second Equation The second equation given is: \[ \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 0 \] We can rewrite this using our definitions of \(X\), \(Y\), and \(Z\): \[ \frac{1}{X} + \frac{1}{Y} + \frac{1}{Z} = 0 \] This can be rewritten as: \[ \frac{YZ + ZX + XY}{XYZ} = 0 \] Thus, we have: \[ YZ + ZX + XY = 0 \] ### Step 3: Use the Identity for Squares We can use the identity: \[ (X + Y + Z)^2 = X^2 + Y^2 + Z^2 + 2(XY + YZ + ZX) \] Substituting the known values: \[ 1^2 = X^2 + Y^2 + Z^2 + 2(0) \] This simplifies to: \[ 1 = X^2 + Y^2 + Z^2 \] ### Step 4: Relate Back to the Original Variables Recall that: \[ X = \frac{p}{a}, \quad Y = \frac{q}{b}, \quad Z = \frac{r}{c} \] Thus: \[ X^2 = \left(\frac{p}{a}\right)^2, \quad Y^2 = \left(\frac{q}{b}\right)^2, \quad Z^2 = \left(\frac{r}{c}\right)^2 \] So we can write: \[ X^2 + Y^2 + Z^2 = \left(\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2}\right) \] Therefore, we have: \[ \frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2} = 1 \] ### Final Answer Thus, the value of \(\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If a,b,cp,q,r six complex numbers such that (p)/(a)+(q)/(b)+(r)/(c)=1+i and (a)/(p)+(b)/(q)+(c)/(r)=0 then value of (p^(2))/(a^(2))+(q^(2))/(b^(2))+(r^(2))/(c^(2))=

If p/a+q/b+r/c=1 and a/p+b/q+c/r=0 where a , b , c , p , q , r are non-zero real numbers, then (p^2)/(a^2)+(q^2)/(b^2)+(r^2)/(c^2) is equal to (a) 0 (b) 1 (c) 3 (d) 9

If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) prove that a^(p)b^(q)c^(r)=1

.prove that (a^(p+q))^(2)(a^(q+r))^(2)(a^(r+p))^(2)/((a^(p)*a^(q)*a^(r))^(4))=1

(b) If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) , prove that a^(p)b^(q)c^(r)=1

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If a^(3) + b^(3)=0 find a+b=

    Text Solution

    |

  2. If a^(4) + b^(4) = a^(2) b^(2) find a^(6) + b^(6)

    Text Solution

    |

  3. If (p)/(a) + (q)/(b) + (r )/(c )=1 " & " (a)/(p) + (b)/(q) + (c )/(r )...

    Text Solution

    |

  4. Given x+y= 2z, then (x)/(x-z) + (z)/(y-z)= ?

    Text Solution

    |

  5. Given x+y= 2z, then (x)/(x-z) + (z)/(y-z) =?

    Text Solution

    |

  6. If x+1/y =1 and y + 1/z =1 then find the value of z + 1/x

    Text Solution

    |

  7. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find xyz= ?

    Text Solution

    |

  8. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/...

    Text Solution

    |

  9. (x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz=...

    Text Solution

    |

  10. If (a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1 and (b+ c ne a)

    Text Solution

    |

  11. Given pq + qr + rp = 0 find (1)/(p^(2)-qr) + (1)/(q^(2) -rp) + (1)...

    Text Solution

    |

  12. Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp...

    Text Solution

    |

  13. If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x), then :

    Text Solution

    |

  14. If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive...

    Text Solution

    |

  15. If (x+ y)^(2) = 21 + z^(2), (y+z)^(2)= 32 + x^(2) and (z+ x)^(2) = 28+...

    Text Solution

    |

  16. If x+ (1)/(x)=2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  17. If x+ (1)/(x)=2, find x^(112)- (1)/(x^(112))= ?

    Text Solution

    |

  18. If m+ (1)/(m-2)=4, find (m-2)^(111) + (1)/((m-2)^(111))=?

    Text Solution

    |

  19. If m+ (1)/(m-2)=4, find m^(2) + m+1=?

    Text Solution

    |

  20. If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

    Text Solution

    |