Home
Class 14
MATHS
Given x+ (1)/(y)=1 and y + (1)/(z)=1 fin...

Given `x+ (1)/(y)=1 and y + (1)/(z)=1` find
`(x+y+z) + ((1)/(x) + (1)/(y) + (1)/(z))=`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( x + \frac{1}{y} = 1 \) 2. \( y + \frac{1}{z} = 1 \) We need to find the value of: \[ (x + y + z) + \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \] ### Step 1: Express \( x \) in terms of \( y \) From the first equation, we can isolate \( x \): \[ x = 1 - \frac{1}{y} \] ### Step 2: Express \( z \) in terms of \( y \) From the second equation, we can isolate \( z \): \[ \frac{1}{z} = 1 - y \implies z = \frac{1}{1 - y} \] ### Step 3: Substitute values of \( x \) and \( z \) into the expression Now we substitute \( x \) and \( z \) into the expression we need to evaluate: \[ x + y + z = \left(1 - \frac{1}{y}\right) + y + \frac{1}{1 - y} \] ### Step 4: Simplify \( x + y + z \) Combining the terms: \[ x + y + z = 1 - \frac{1}{y} + y + \frac{1}{1 - y} \] ### Step 5: Find \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) Next, we calculate \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{1 - \frac{1}{y}} = \frac{y}{y - 1} \] Now we can find \( \frac{1}{y} \) and \( \frac{1}{z} \): \[ \frac{1}{y} = \frac{1}{y} \] \[ \frac{1}{z} = 1 - y \] So, we have: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{y}{y - 1} + \frac{1}{y} + (1 - y) \] ### Step 6: Combine the two parts Now we need to combine \( (x + y + z) \) and \( \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \): \[ (x + y + z) + \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \] ### Step 7: Substitute \( y = 2 \) for simplification To simplify our calculations, we can assume \( y = 2 \): 1. From \( x + \frac{1}{2} = 1 \), we find \( x = \frac{1}{2} \). 2. From \( 2 + \frac{1}{z} = 1 \), we find \( z = -1 \). ### Step 8: Calculate the final expression Now substituting \( x = \frac{1}{2} \), \( y = 2 \), and \( z = -1 \): \[ x + y + z = \frac{1}{2} + 2 - 1 = \frac{1}{2} + 1 = \frac{3}{2} \] Now calculate \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \): \[ \frac{1}{x} = 2, \quad \frac{1}{y} = \frac{1}{2}, \quad \frac{1}{z} = -1 \] Thus: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 2 + \frac{1}{2} - 1 = 1 + \frac{1}{2} = \frac{3}{2} \] ### Final Calculation: Now we combine both parts: \[ \frac{3}{2} + \frac{3}{2} = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

if x+(1)/(y)=1 and y+(1)/(z)=1 then the value of z+(1)/(x)

2 ^ (x) = 5 ^ (y) = 10 ^ (- z) * find ((1) / (x) + (1) / (y) + (1) / (z))

If x+1/y =1 and y + 1/z =1 then find the value of z + 1/x

If (1)/(x+1) + (2)/(y+2) + (1009)/(z+ 1009)=1 find (x)/(x+1) + (y)/(y+2) + (z)/(z + 1009) = ?

If 2^(x)=3^(y)=6^(-z) find the value of ((1)/(x)+(1)/(y)+(1)/(z))

(x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz= ?

(1) / (1 + x + y ^ (- 1)) + (1) / (1 + y + z ^ (- 1)) + (1) / (1 + z + x ^ (- 1))

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If x+1/y =1 and y + 1/z =1 then find the value of z + 1/x

    Text Solution

    |

  2. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find xyz= ?

    Text Solution

    |

  3. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/...

    Text Solution

    |

  4. (x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz=...

    Text Solution

    |

  5. If (a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1 and (b+ c ne a)

    Text Solution

    |

  6. Given pq + qr + rp = 0 find (1)/(p^(2)-qr) + (1)/(q^(2) -rp) + (1)...

    Text Solution

    |

  7. Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp...

    Text Solution

    |

  8. If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x), then :

    Text Solution

    |

  9. If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive...

    Text Solution

    |

  10. If (x+ y)^(2) = 21 + z^(2), (y+z)^(2)= 32 + x^(2) and (z+ x)^(2) = 28+...

    Text Solution

    |

  11. If x+ (1)/(x)=2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  12. If x+ (1)/(x)=2, find x^(112)- (1)/(x^(112))= ?

    Text Solution

    |

  13. If m+ (1)/(m-2)=4, find (m-2)^(111) + (1)/((m-2)^(111))=?

    Text Solution

    |

  14. If m+ (1)/(m-2)=4, find m^(2) + m+1=?

    Text Solution

    |

  15. If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

    Text Solution

    |

  16. If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1=?

    Text Solution

    |

  17. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  18. If x+ (1)/(x)= -2, find x^(112) + (1)/(x^(112))=?

    Text Solution

    |

  19. If x+ (1)/(x)= -2, find x^(112) - (1)/(x^(113))= ?

    Text Solution

    |

  20. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(12))= ?

    Text Solution

    |