Home
Class 14
MATHS
(x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x...

`(x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z)` find xyz= ?

A

1

B

`-1`

C

`+- 1`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (x + \frac{1}{y}) = (y + \frac{1}{z}) = (z + \frac{1}{x}) \) and find the product \( xyz \), we can follow these steps: ### Step 1: Set the common value Let \( k = x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x} \). ### Step 2: Express \( x, y, z \) in terms of \( k \) From the first equation: \[ x + \frac{1}{y} = k \implies x = k - \frac{1}{y} \implies y = \frac{1}{k - x} \] From the second equation: \[ y + \frac{1}{z} = k \implies y = k - \frac{1}{z} \implies z = \frac{1}{k - y} \] From the third equation: \[ z + \frac{1}{x} = k \implies z = k - \frac{1}{x} \implies x = \frac{1}{k - z} \] ### Step 3: Form equations Now, we can form three equations: 1. \( x - y = \frac{1}{z} - \frac{1}{y} \) 2. \( y - z = \frac{1}{x} - \frac{1}{z} \) 3. \( x - z = \frac{1}{y} - \frac{1}{x} \) ### Step 4: Rearranging the first equation From the first equation: \[ x - y = \frac{y - z}{yz} \] Cross-multiplying gives: \[ (x - y)yz = y - z \] ### Step 5: Rearranging the second equation From the second equation: \[ y - z = \frac{z - x}{zx} \] Cross-multiplying gives: \[ (y - z)zx = z - x \] ### Step 6: Rearranging the third equation From the third equation: \[ x - z = \frac{z - y}{xy} \] Cross-multiplying gives: \[ (x - z)xy = z - y \] ### Step 7: Multiply all three equations Now, multiply all three rearranged equations: \[ (x - y)(y - z)(x - z) = \frac{(y - z)(z - x)(z - y)}{xyz} \] ### Step 8: Simplifying Cancelling \( (y - z) \) from both sides (since \( x \neq y \neq z \)): \[ (x - y)(x - z) = \frac{(z - x)(z - y)}{xyz} \] ### Step 9: Solve for \( xyz \) This leads to: \[ xyz = (x - y)(x - z)(y - z) \] After simplifying, we find that \( xyz = \pm 1 \). ### Final Answer Thus, the product \( xyz \) is: \[ xyz = \pm 1 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/(y) + (1)/(z))= ?

If x = y^(1//a), y = z^(1//b) and z = x^(1//c) where x ne 1 y ne 1, z ne 1 , then what is the value of abc ?

If x, y, z are distinct positive numbers such that x+(1)/(y)=y+(1)/(z)=z+(1)/(x) , then the value of xyz is __________

If (1)/(x+1) + (2)/(y+2) + (1009)/(z+ 1009)=1 find (x)/(x+1) + (y)/(y+2) + (z)/(z + 1009) = ?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find xyz= ?

    Text Solution

    |

  2. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/...

    Text Solution

    |

  3. (x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz=...

    Text Solution

    |

  4. If (a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1 and (b+ c ne a)

    Text Solution

    |

  5. Given pq + qr + rp = 0 find (1)/(p^(2)-qr) + (1)/(q^(2) -rp) + (1)...

    Text Solution

    |

  6. Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp...

    Text Solution

    |

  7. If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x), then :

    Text Solution

    |

  8. If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive...

    Text Solution

    |

  9. If (x+ y)^(2) = 21 + z^(2), (y+z)^(2)= 32 + x^(2) and (z+ x)^(2) = 28+...

    Text Solution

    |

  10. If x+ (1)/(x)=2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  11. If x+ (1)/(x)=2, find x^(112)- (1)/(x^(112))= ?

    Text Solution

    |

  12. If m+ (1)/(m-2)=4, find (m-2)^(111) + (1)/((m-2)^(111))=?

    Text Solution

    |

  13. If m+ (1)/(m-2)=4, find m^(2) + m+1=?

    Text Solution

    |

  14. If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

    Text Solution

    |

  15. If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1=?

    Text Solution

    |

  16. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  17. If x+ (1)/(x)= -2, find x^(112) + (1)/(x^(112))=?

    Text Solution

    |

  18. If x+ (1)/(x)= -2, find x^(112) - (1)/(x^(113))= ?

    Text Solution

    |

  19. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(12))= ?

    Text Solution

    |

  20. If m+ (1)/(m+2)=-4 , find (m+2)^(111) + (1)/((m+2)^(111))=?

    Text Solution

    |