Home
Class 14
MATHS
If (a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1...

If `(a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1 and (b+ c ne a)`

A

`(1)/(a)= (1)/(b)+(1)/(c )`

B

`(1)/(b)= (1)/(a) + (1)/(c )`

C

`(1)/(c )= (1)/(a) + (1)/(b)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{a-b}{c} + \frac{b+c}{a} + \frac{c-a}{b} = 1 \] given that \(b+c \neq a\), we will follow these steps: ### Step 1: Combine the fractions We start by rewriting the equation: \[ \frac{a-b}{c} + \frac{b+c}{a} + \frac{c-a}{b} = 1 \] To combine these fractions, we will find a common denominator, which is \(abc\). ### Step 2: Rewrite each term with the common denominator Now we rewrite each term: \[ \frac{(a-b)ab + (b+c)bc + (c-a)ca}{abc} = 1 \] ### Step 3: Expand the numerator Next, we expand the numerator: \[ (a-b)ab + (b+c)bc + (c-a)ca = a^2b - ab^2 + b^2c + bc^2 + c^2a - a^2c \] ### Step 4: Set the equation equal to the common denominator Now we set the equation equal to \(abc\): \[ a^2b - ab^2 + b^2c + bc^2 + c^2a - a^2c = abc \] ### Step 5: Rearrange the equation Rearranging gives us: \[ a^2b - ab^2 + b^2c + bc^2 + c^2a - a^2c - abc = 0 \] ### Step 6: Factor or simplify Now we will look for common factors or a way to simplify the expression. We can group terms strategically to find common factors. ### Step 7: Identify potential identities After simplifying, we can look for identities. From the original equation, we can derive: \[ \frac{b-c}{bc} = \frac{1}{a} \] ### Step 8: Rearranging gives us the desired identity From this expression, we can rearrange to find: \[ \frac{1}{c} = \frac{1}{a} + \frac{1}{b} \] ### Conclusion Thus, we conclude that: \[ \frac{1}{c} = \frac{1}{a} + \frac{1}{b} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If a+b+c= 0 , then ((a+b)/(c ) + (b+c)/(a) + (c+ a)/(b)) ((c )/(a+b) + (b)/(a+c) + (a)/(b+c)) = ?

The non-zero solution of the equation (a-x^(2))/(bx) - (b-x)/(c) = (c-x)/(b) - (b - x^(2))/(c x) , where b ne 0, c ne 0 is

If a+b+c= 0, then the value of ((a+b)/c + (b+c)/a + (c+a)/b) ((a)/(b+c) + b/(c+a) + c/(a+b)) is :

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. Given x+ (1)/(y)=1 and y + (1)/(z)=1 find (x+y+z) + ((1)/(x) + (1)/...

    Text Solution

    |

  2. (x+ (1)/(y)) = (y+ (1)/(z))= (z + (1)/(x)) and (x ne y ne z) find xyz=...

    Text Solution

    |

  3. If (a-b)/(c ) + (b+c)/(a) + (c-a)/(b)=1 and (b+ c ne a)

    Text Solution

    |

  4. Given pq + qr + rp = 0 find (1)/(p^(2)-qr) + (1)/(q^(2) -rp) + (1)...

    Text Solution

    |

  5. Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp...

    Text Solution

    |

  6. If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x), then :

    Text Solution

    |

  7. If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive...

    Text Solution

    |

  8. If (x+ y)^(2) = 21 + z^(2), (y+z)^(2)= 32 + x^(2) and (z+ x)^(2) = 28+...

    Text Solution

    |

  9. If x+ (1)/(x)=2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  10. If x+ (1)/(x)=2, find x^(112)- (1)/(x^(112))= ?

    Text Solution

    |

  11. If m+ (1)/(m-2)=4, find (m-2)^(111) + (1)/((m-2)^(111))=?

    Text Solution

    |

  12. If m+ (1)/(m-2)=4, find m^(2) + m+1=?

    Text Solution

    |

  13. If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

    Text Solution

    |

  14. If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1=?

    Text Solution

    |

  15. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  16. If x+ (1)/(x)= -2, find x^(112) + (1)/(x^(112))=?

    Text Solution

    |

  17. If x+ (1)/(x)= -2, find x^(112) - (1)/(x^(113))= ?

    Text Solution

    |

  18. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(12))= ?

    Text Solution

    |

  19. If m+ (1)/(m+2)=-4 , find (m+2)^(111) + (1)/((m+2)^(111))=?

    Text Solution

    |

  20. If m+ (1)/(m+2)=-4 , find m^(2) + m+1=?

    Text Solution

    |