Home
Class 14
MATHS
If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z...

If `x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29` and x, y & z are positive numbers. Find x, y & z=?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations given in the problem, we will follow these steps: 1. **Write down the equations:** - \( x(x+y+z) = 4 \) (Equation 1) - \( y(x+y+z) = 16 \) (Equation 2) - \( z(x+y+z) = 29 \) (Equation 3) 2. **Add all three equations:** \[ x(x+y+z) + y(x+y+z) + z(x+y+z) = 4 + 16 + 29 \] This simplifies to: \[ (x+y+z)(x+y+z) = 49 \] 3. **Let \( S = x+y+z \). Then we have:** \[ S^2 = 49 \] Taking the square root of both sides: \[ S = \sqrt{49} = 7 \] 4. **Substituting \( S \) back into the equations:** - From Equation 1: \[ x \cdot 7 = 4 \implies x = \frac{4}{7} \] - From Equation 2: \[ y \cdot 7 = 16 \implies y = \frac{16}{7} \] - From Equation 3: \[ z \cdot 7 = 29 \implies z = \frac{29}{7} \] 5. **Final values:** - \( x = \frac{4}{7} \) - \( y = \frac{16}{7} \) - \( z = \frac{29}{7} \) Thus, the values of \( x, y, \) and \( z \) are: - \( x = \frac{4}{7} \) - \( y = \frac{16}{7} \) - \( z = \frac{29}{7} \)
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are positive real numbers such that x+y+z=a, then

If x(x+y+z)=9, y(x+y+z)=16 and z(x+y+z)=144 then what is the value of x?

If x(x+y+z)=9,y(x+y+z)=16and z(x+y+z)=144 then value of x will be?

If x=y^(z), y = z^(x) and z=x^(y) , then

If (x + y)/2 = (y+z)/3 = (z + x)/4 , then find x : y: z .

A(x, y, z)=" min. "(x+y, y+z, z+x) B(x, y, z)="max "(x-y, y-z, z-x) C(x, y, z)=" max"(A(x, y, z), B(x, y, z)) D(x, y, z)=" min "(A(x, y, z), B(x, y, z)) What is the value of A(2, 3, 4)+B(2, 3, 4) ?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. Given pq + qr + rp = 0 find (p^(2))/(p^(2)-qr) + (q^(2))/(q^(2) -rp...

    Text Solution

    |

  2. If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x), then :

    Text Solution

    |

  3. If x(x+y+z) =4, y(x+y+z)=16 and z (x+y+z)=29 and x, y & z are positive...

    Text Solution

    |

  4. If (x+ y)^(2) = 21 + z^(2), (y+z)^(2)= 32 + x^(2) and (z+ x)^(2) = 28+...

    Text Solution

    |

  5. If x+ (1)/(x)=2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  6. If x+ (1)/(x)=2, find x^(112)- (1)/(x^(112))= ?

    Text Solution

    |

  7. If m+ (1)/(m-2)=4, find (m-2)^(111) + (1)/((m-2)^(111))=?

    Text Solution

    |

  8. If m+ (1)/(m-2)=4, find m^(2) + m+1=?

    Text Solution

    |

  9. If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

    Text Solution

    |

  10. If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1=?

    Text Solution

    |

  11. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(11))= ?

    Text Solution

    |

  12. If x+ (1)/(x)= -2, find x^(112) + (1)/(x^(112))=?

    Text Solution

    |

  13. If x+ (1)/(x)= -2, find x^(112) - (1)/(x^(113))= ?

    Text Solution

    |

  14. If x+ (1)/(x)= -2, find x^(11) + (1)/(x^(12))= ?

    Text Solution

    |

  15. If m+ (1)/(m+2)=-4 , find (m+2)^(111) + (1)/((m+2)^(111))=?

    Text Solution

    |

  16. If m+ (1)/(m+2)=-4 , find m^(2) + m+1=?

    Text Solution

    |

  17. If m+ (1)/(m-2)=0, find (m-2)^(12) + (1)/((m-2)^(11))= ?

    Text Solution

    |

  18. If m+ (1)/(m-2)=0, find m^(5) + m^(4) + m^(3) + m^(2)+ m+1= ?

    Text Solution

    |

  19. If x+ (1)/(x)=1, find x^(9) + (1)/(x^(9))=

    Text Solution

    |

  20. If x+ (1)/(x)=1, find x^(12) + (1)/(x^(12))=

    Text Solution

    |