Home
Class 14
MATHS
If m+ (1)/(m-2)=4, find (m-2)^(111) +...

If `m+ (1)/(m-2)=4`, find
`(m-2)^(111) + (1)/((m-2)^(111))=`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m + \frac{1}{m-2} = 4 \) and find the value of \( (m-2)^{111} + \frac{1}{(m-2)^{111}} \), we can follow these steps: ### Step 1: Rearranging the equation We start with the equation: \[ m + \frac{1}{m-2} = 4 \] Subtract \( m \) from both sides: \[ \frac{1}{m-2} = 4 - m \] ### Step 2: Cross-multiplying Next, we can cross-multiply to eliminate the fraction: \[ 1 = (4 - m)(m - 2) \] ### Step 3: Expanding the equation Now, expand the right-hand side: \[ 1 = 4m - 8 - m^2 + 2m \] Combine like terms: \[ 1 = -m^2 + 6m - 8 \] ### Step 4: Rearranging into standard form Rearranging gives us: \[ m^2 - 6m + 9 = 0 \] ### Step 5: Factoring the quadratic This can be factored as: \[ (m - 3)^2 = 0 \] Thus, we find: \[ m - 3 = 0 \quad \Rightarrow \quad m = 3 \] ### Step 6: Finding \( m - 2 \) Now we can find \( m - 2 \): \[ m - 2 = 3 - 2 = 1 \] ### Step 7: Calculating \( (m-2)^{111} + \frac{1}{(m-2)^{111}} \) Substituting \( m - 2 = 1 \) into the expression we need to evaluate: \[ (m-2)^{111} + \frac{1}{(m-2)^{111}} = 1^{111} + \frac{1}{1^{111}} = 1 + 1 = 2 \] ### Final Answer Thus, the final result is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If m+ (1)/(m-2)=0 , find (m-2)^(12) + (1)/((m-2)^(11))= ?

If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

If m+(1)/(m-2)=4 then (m-2)^(2)+(1)/((m-2)^(2))=

If m+ (1)/(m-2)=4 , find m^(2) + m+1 =?

If m+ (1)/(m+2)=-4 , find m^(2) + m+1 =?

If m+ (1)/(m-2)=0 , find m^(5) + m^(4) + m^(3) + m^(2)+ m+1 = ?

If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1 =?

If m-(1)/(m)=5 then find m^(2)-(1)/(m^(2))

Ifm-(1)/(m)=5, find (1)m^(2)+(1)/(m^(2))(pi i)m^(2)-(1)/(m^(2))