Home
Class 14
MATHS
If m+ (1)/(m+2)= 0 find (m+2)^(112) +...

If `m+ (1)/(m+2)= 0` find
`(m+2)^(112) + (1)/((m+2)^(112))=` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m + \frac{1}{m + 2} = 0 \) and find the value of \( (m + 2)^{112} + \frac{1}{(m + 2)^{112}} \), we can follow these steps: ### Step 1: Solve for \( m + 2 \) Starting with the given equation: \[ m + \frac{1}{m + 2} = 0 \] We can rearrange this equation by isolating the fraction: \[ \frac{1}{m + 2} = -m \] ### Step 2: Multiply both sides by \( m + 2 \) To eliminate the fraction, we multiply both sides by \( m + 2 \): \[ 1 = -m(m + 2) \] This simplifies to: \[ 1 = -m^2 - 2m \] ### Step 3: Rearrange the equation Rearranging gives us: \[ m^2 + 2m + 1 = 0 \] ### Step 4: Factor the quadratic equation This can be factored as: \[ (m + 1)^2 = 0 \] ### Step 5: Solve for \( m \) Setting the factor equal to zero gives: \[ m + 1 = 0 \implies m = -1 \] ### Step 6: Find \( m + 2 \) Now, substituting \( m \) back into \( m + 2 \): \[ m + 2 = -1 + 2 = 1 \] ### Step 7: Substitute into the expression Now we substitute \( m + 2 \) into the expression we need to evaluate: \[ (m + 2)^{112} + \frac{1}{(m + 2)^{112}} = 1^{112} + \frac{1}{1^{112}} \] ### Step 8: Simplify the expression This simplifies to: \[ 1 + 1 = 2 \] ### Final Answer Thus, the value of \( (m + 2)^{112} + \frac{1}{(m + 2)^{112}} \) is: \[ \boxed{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If m+ (1)/(m-2)=4 , find (m-2)^(111) + (1)/((m-2)^(111))= ?

If m+ (1)/(m-2)=0 , find (m-2)^(12) + (1)/((m-2)^(11))= ?

If m+ (1)/(m+2)=-4 , find (m+2)^(111) + (1)/((m+2)^(111))= ?

If m+ (1)/(m-2)=4 , find m^(2) + m+1 =?

If m+ (1)/(m+2)=-4 , find m^(2) + m+1 =?

If x+ (1)/(x)= -2 , find x^(112) + (1)/(x^(112))= ?

If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1 =?

If m-(1)/(m)=5 then find m^(2)-(1)/(m^(2))

If x+ (1)/(x)=2 , find x^(112)- (1)/(x^(112))= ?