Home
Class 14
MATHS
If m+ (1)/(m+2)= 0 find m^(4) + m^(3) ...

If `m+ (1)/(m+2)= 0` find
`m^(4) + m^(3) + m^(2) + m+1`=?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m + \frac{1}{m + 2} = 0 \) and find the value of \( m^4 + m^3 + m^2 + m + 1 \), we will follow these steps: ### Step 1: Solve for \( m \) Starting with the equation: \[ m + \frac{1}{m + 2} = 0 \] We can rearrange this equation: \[ m = -\frac{1}{m + 2} \] ### Step 2: Eliminate the fraction To eliminate the fraction, multiply both sides by \( m + 2 \): \[ m(m + 2) = -1 \] This expands to: \[ m^2 + 2m + 1 = 0 \] ### Step 3: Factor the quadratic equation The equation can be factored as: \[ (m + 1)^2 = 0 \] ### Step 4: Solve for \( m \) Setting the factored equation to zero gives: \[ m + 1 = 0 \implies m = -1 \] ### Step 5: Substitute \( m \) into the expression Now we need to find \( m^4 + m^3 + m^2 + m + 1 \) with \( m = -1 \): \[ (-1)^4 + (-1)^3 + (-1)^2 + (-1) + 1 \] Calculating each term: \[ 1 - 1 + 1 - 1 + 1 \] ### Step 6: Simplify the expression Now, simplify: \[ 1 - 1 + 1 - 1 + 1 = 1 \] Thus, the final answer is: \[ \boxed{1} \] ---
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If m+ (1)/(m-2)=0 , find m^(5) + m^(4) + m^(3) + m^(2)+ m+1 = ?

If m+ (1)/(m-2)=4 , find m^(2) + m+1 =?

If m+ (1)/(m+2)=-4 , find m^(2) + m+1 =?

If m-(1)/(m)=5 then find m^(2)-(1)/(m^(2))

If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

If m+ (1)/(m-2)=0 , find (m-2)^(12) + (1)/((m-2)^(11))= ?

If m+ (1)/(m-2)=4 , find (m-2)^(111) + (1)/((m-2)^(111))= ?

If 3m - (1)/(3m) = 3, m ne 0 , then m^(2) + (1)/(81 m^(2)) is equal to

If m+ (1)/(m+2)=-4 , find (m+2)^(111) + (1)/((m+2)^(111))= ?