Home
Class 14
MATHS
If x+ (1)/(x)= -2, find x^(112) + (1)...

If `x+ (1)/(x)= -2`, find
`x^(112) + (1)/(x^(112))=`?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = -2 \) and find \( x^{112} + \frac{1}{x^{112}} \), we can follow these steps: ### Step 1: Solve for \( x \) We start with the equation: \[ x + \frac{1}{x} = -2 \] To eliminate the fraction, we can multiply both sides by \( x \) (assuming \( x \neq 0 \)): \[ x^2 + 1 = -2x \] Rearranging gives us: \[ x^2 + 2x + 1 = 0 \] This can be factored as: \[ (x + 1)^2 = 0 \] Thus, we find: \[ x + 1 = 0 \implies x = -1 \] ### Step 2: Calculate \( x^{112} + \frac{1}{x^{112}} \) Now that we have \( x = -1 \), we can find \( x^{112} \): \[ x^{112} = (-1)^{112} = 1 \] Next, we calculate \( \frac{1}{x^{112}} \): \[ \frac{1}{x^{112}} = \frac{1}{1} = 1 \] Now we can add these two results: \[ x^{112} + \frac{1}{x^{112}} = 1 + 1 = 2 \] ### Final Answer Thus, the value of \( x^{112} + \frac{1}{x^{112}} \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x)= -2 , find x^(112) - (1)/(x^(113))= ?

If x + (1)/(x) = 6 , then find x^(2) + (1)/(x^(2)) .

If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

if x+(1)/(x)=5 then find x^(2)-(1)/(x^(2))

If x+(1)/(x)=6, find :x^(2)+1/x^(2)

If x+(1)/(x)=6, find x^(2)+(1)/(x^(2))

If p + (1)/(p) = 112 , find (p - 112)^(15) + (1)/(p^(15)) .

If x +(1)/(x) =2 , find the value of (x^2 +(1)/(x^2))(x^3 +(1)/(x^3))

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If x+(1)/(x)=3, then find x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))