Home
Class 14
MATHS
If x+ (1)/(x)= -2, find x^(112) - (1)/...

If `x+ (1)/(x)= -2`, find
`x^(112) - (1)/(x^(113))=` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = -2 \) and find \( x^{112} - \frac{1}{x^{113}} \), we can follow these steps: ### Step 1: Solve for \( x \) We start with the equation: \[ x + \frac{1}{x} = -2 \] To eliminate the fraction, we can multiply both sides by \( x \) (assuming \( x \neq 0 \)): \[ x^2 + 1 = -2x \] Rearranging gives us: \[ x^2 + 2x + 1 = 0 \] This can be factored as: \[ (x + 1)^2 = 0 \] Thus, we find: \[ x + 1 = 0 \implies x = -1 \] ### Step 2: Substitute \( x \) into the expression Now we need to evaluate: \[ x^{112} - \frac{1}{x^{113}} \] Substituting \( x = -1 \): \[ (-1)^{112} - \frac{1}{(-1)^{113}} \] ### Step 3: Calculate \( (-1)^{112} \) and \( (-1)^{113} \) Since \( 112 \) is even: \[ (-1)^{112} = 1 \] And since \( 113 \) is odd: \[ (-1)^{113} = -1 \implies \frac{1}{(-1)^{113}} = \frac{1}{-1} = -1 \] ### Step 4: Combine the results Now substituting back into our expression: \[ 1 - (-1) = 1 + 1 = 2 \] ### Final Answer Thus, the value of \( x^{112} - \frac{1}{x^{113}} \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x)= -2 , find x^(112) + (1)/(x^(112))= ?

If x+ (1)/(x)= -2 , find x^(11) + (1)/(x^(11)) = ?

If x+ (1)/(x)= -2 , find x^(11) + (1)/(x^(12))= ?

If x+ (1)/(x)=2 , find x^(112)- (1)/(x^(112))= ?

If x+ (1)/(x)=2 , find x^(11) + (1)/(x^(11))= ?

If x + (1)/(x) = 6 , then find x^(2) + (1)/(x^(2)) .

If x - (1)/(x) = 2 , then find x^(4) + (1)/(x^(4)) .

if x+(1)/(x)=5 then find x^(2)-(1)/(x^(2))

If x+(1)/(x)=6, find x^(2)+(1)/(x^(2))

If x+(1)/(x)=6, find :x^(2)+1/x^(2)