Home
Class 14
MATHS
If m+ (1)/(m-2)=0, find (m-2)^(12) + (...

If `m+ (1)/(m-2)=0`, find
`(m-2)^(12) + (1)/((m-2)^(11))=` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m + \frac{1}{m-2} = 0 \) and find the expression \( (m-2)^{12} + \frac{1}{(m-2)^{11}} \), we can follow these steps: ### Step 1: Rearrange the given equation Starting with the equation: \[ m + \frac{1}{m-2} = 0 \] We can rearrange it to isolate \( m \): \[ m = -\frac{1}{m-2} \] ### Step 2: Multiply both sides by \( m-2 \) To eliminate the fraction, multiply both sides by \( m-2 \): \[ m(m-2) = -1 \] This expands to: \[ m^2 - 2m + 1 = 0 \] ### Step 3: Solve the quadratic equation Now we can solve the quadratic equation \( m^2 - 2m + 1 = 0 \). This can be factored as: \[ (m-1)^2 = 0 \] Thus, we find: \[ m - 1 = 0 \implies m = 1 \] ### Step 4: Find \( m-2 \) Now, substitute \( m = 1 \) back to find \( m-2 \): \[ m - 2 = 1 - 2 = -1 \] ### Step 5: Substitute \( m-2 \) into the expression Now we need to evaluate: \[ (m-2)^{12} + \frac{1}{(m-2)^{11}} \] Substituting \( m-2 = -1 \): \[ (-1)^{12} + \frac{1}{(-1)^{11}} \] ### Step 6: Calculate the powers Calculating the powers: \[ (-1)^{12} = 1 \quad \text{(because 12 is even)} \] \[ (-1)^{11} = -1 \quad \text{(because 11 is odd)} \] Thus: \[ \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1 \] ### Step 7: Combine the results Now combine the results: \[ 1 + (-1) = 1 - 1 = 0 \] ### Final Answer Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If m+ (1)/(m-2)=4 , find (m-2)^(111) + (1)/((m-2)^(111))= ?

If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

If m+ (1)/(m+2)=-4 , find (m+2)^(111) + (1)/((m+2)^(111))= ?

If m+ (1)/(m-2)=4 , find m^(2) + m+1 =?

If m+ (1)/(m+2)=-4 , find m^(2) + m+1 =?

If m+ (1)/(m-2)=0 , find m^(5) + m^(4) + m^(3) + m^(2)+ m+1 = ?

If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1 =?

If 3m - (1)/(3m) = 3, m ne 0 , then m^(2) + (1)/(81 m^(2)) is equal to

If m-(1)/(m)=5 then find m^(2)-(1)/(m^(2))