Home
Class 14
MATHS
If m+ (1)/(m-2)=0, find m^(5) + m^(4)...

If `m+ (1)/(m-2)=0`, find
`m^(5) + m^(4) + m^(3) + m^(2)+ m+1`= ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( m + \frac{1}{m - 2} = 0 \) and find the value of \( m^5 + m^4 + m^3 + m^2 + m + 1 \), we can follow these steps: ### Step 1: Solve for \( m \) Start with the equation: \[ m + \frac{1}{m - 2} = 0 \] Rearranging gives: \[ m = -\frac{1}{m - 2} \] ### Step 2: Eliminate the fraction Multiply both sides by \( m - 2 \) (assuming \( m \neq 2 \)): \[ m(m - 2) = -1 \] Expanding this gives: \[ m^2 - 2m + 1 = 0 \] ### Step 3: Factor the quadratic equation The equation can be factored as: \[ (m - 1)^2 = 0 \] This means: \[ m - 1 = 0 \implies m = 1 \] ### Step 4: Substitute \( m \) into the polynomial expression Now we need to find: \[ m^5 + m^4 + m^3 + m^2 + m + 1 \] Substituting \( m = 1 \): \[ 1^5 + 1^4 + 1^3 + 1^2 + 1 + 1 \] ### Step 5: Calculate the value Calculating each term: \[ 1 + 1 + 1 + 1 + 1 + 1 = 6 \] ### Final Answer Thus, the value of \( m^5 + m^4 + m^3 + m^2 + m + 1 \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If m+ (1)/(m+2)= 0 find m^(4) + m^(3) + m^(2) + m+1 =?

If m+ (1)/(m-2)=4 , find m^(2) + m+1 =?

If m+ (1)/(m+2)=-4 , find m^(2) + m+1 =?

If m+ (1)/(m-2)=0 , find (m-2)^(12) + (1)/((m-2)^(11))= ?

If m-(1)/(m)=5 then find m^(2)-(1)/(m^(2))

If m+ (1)/(m-2)=4 , find (m-2)^(111) + (1)/((m-2)^(111))= ?

If m+ (1)/(m+2)= 0 find (m+2)^(112) + (1)/((m+2)^(112))= ?

If m+ (1)/(m+2)=-4 , find (m+2)^(111) + (1)/((m+2)^(111))= ?

Ifm-(1)/(m)=5, find (1)m^(2)+(1)/(m^(2))(pi i)m^(2)-(1)/(m^(2))