Home
Class 14
MATHS
If x+ (1)/(x)=1, find x^(23) + (1)/(x...

If `x+ (1)/(x)=1`, find
`x^(23) + (1)/(x^(23))=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 1 \) and find \( x^{23} + \frac{1}{x^{23}} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x + \frac{1}{x} = 1 \] ### Step 2: Cube both sides To find \( x^3 + \frac{1}{x^3} \), we first cube both sides of the equation: \[ \left( x + \frac{1}{x} \right)^3 = 1^3 \] This expands to: \[ x^3 + \frac{1}{x^3} + 3 \left( x + \frac{1}{x} \right) = 1 \] ### Step 3: Substitute the known value Since \( x + \frac{1}{x} = 1 \), we can substitute this into our equation: \[ x^3 + \frac{1}{x^3} + 3(1) = 1 \] This simplifies to: \[ x^3 + \frac{1}{x^3} + 3 = 1 \] ### Step 4: Solve for \( x^3 + \frac{1}{x^3} \) Now, we can isolate \( x^3 + \frac{1}{x^3} \): \[ x^3 + \frac{1}{x^3} = 1 - 3 \] Thus: \[ x^3 + \frac{1}{x^3} = -2 \] ### Step 5: Find \( x^{23} + \frac{1}{x^{23}} \) To find \( x^{23} + \frac{1}{x^{23}} \), we can use the recurrence relation: \[ x^n + \frac{1}{x^n} = (x^{n-1} + \frac{1}{x^{n-1}})(x + \frac{1}{x}) - (x^{n-2} + \frac{1}{x^{n-2}}) \] We already know: - \( x + \frac{1}{x} = 1 \) - \( x^3 + \frac{1}{x^3} = -2 \) Now, we can calculate \( x^4 + \frac{1}{x^4} \): \[ x^4 + \frac{1}{x^4} = (x^3 + \frac{1}{x^3})(x + \frac{1}{x}) - (x^2 + \frac{1}{x^2}) \] First, we need \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 = 1^2 - 2 = -1 \] Now substituting back: \[ x^4 + \frac{1}{x^4} = (-2)(1) - (-1) = -2 + 1 = -1 \] Continuing this process, we can find: - \( x^5 + \frac{1}{x^5} = (x^4 + \frac{1}{x^4})(x + \frac{1}{x}) - (x^3 + \frac{1}{x^3}) = (-1)(1) - (-2) = -1 + 2 = 1 \) - \( x^6 + \frac{1}{x^6} = (x^5 + \frac{1}{x^5})(x + \frac{1}{x}) - (x^4 + \frac{1}{x^4}) = (1)(1) - (-1) = 1 + 1 = 2 \) - Continue this pattern until \( n = 23 \). ### Final Result After calculating through the recurrence relation, we find: \[ x^{23} + \frac{1}{x^{23}} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=5, then x^(2)+(1)/(x^(2))=25 (b) 10 (c) 23 (d) 27

If x^(2)+(1)/(x^(2))=23, find the value of x+(1)/(x)

Factor of x^(2)-x^(26)-x^(23) +1

If x^(4) + (1)/(x^(4)) = 23 , then the value of (x - (1)/(x))^(2) will be

If f(x)=|((1+x)^(17),(a+x)^(19),(1+x)^(23)),((a+x)^(23),(a+x)^(29),(1+x)^(34)),((1+x)^(41),(1+x)^(43),(1+x)^(47))| =A+Bx+Cx^(2)+………. then A is equal to………….

(x) / (4) + (y) / (5) + 1 = 23, (x) / (5) + (y) / (4) = 23

If x=(1)/(2)(5-3i), then find the value of x^(4)-x^(3)-12x^(2)+23x+12

If 4.6% of x is 23, find x.

find x,quad if quad (x+1,3)-=(2,3)