Home
Class 14
MATHS
If x + (1)/(x)=1, find x^(103) + x^(1...

If `x + (1)/(x)=1`, find
`x^(103) + x^(100) + x^(90) + x^(87) + x^(60) + x^(57) + x^(9) + x^(6) + x^(3) + 3=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 1 \) and find the value of \( x^{103} + x^{100} + x^{90} + x^{87} + x^{60} + x^{57} + x^{9} + x^{6} + x^{3} + 3 \), we will follow these steps: ### Step 1: Solve for \( x \) Starting with the equation: \[ x + \frac{1}{x} = 1 \] Multiply both sides by \( x \) to eliminate the fraction: \[ x^2 + 1 = x \] Rearranging gives us: \[ x^2 - x + 1 = 0 \] ### Step 2: Find the roots of the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -1, c = 1 \): \[ x = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} \] This simplifies to: \[ x = \frac{1 \pm i\sqrt{3}}{2} \] ### Step 3: Calculate \( x^3 \) We can find \( x^3 \) using the identity \( x + \frac{1}{x} = 1 \): Cubing both sides: \[ \left( x + \frac{1}{x} \right)^3 = 1^3 \] Expanding the left-hand side: \[ x^3 + 3x \cdot \frac{1}{x} \cdot (x + \frac{1}{x}) = 1 \] This simplifies to: \[ x^3 + 3 = 1 \implies x^3 = -2 \] ### Step 4: Find higher powers of \( x \) Using the result \( x^3 = -2 \): - \( x^6 = (x^3)^2 = (-2)^2 = 4 \) - \( x^9 = x^3 \cdot x^6 = -2 \cdot 4 = -8 \) - \( x^{60} = (x^3)^{20} = (-2)^{20} = 1048576 \) - \( x^{57} = x^{54} \cdot x^3 = (x^3)^{18} \cdot x^3 = 1048576 \cdot (-2) = -2097152 \) - \( x^{87} = x^{84} \cdot x^3 = (x^3)^{28} \cdot x^3 = 268435456 \cdot (-2) = -536870912 \) - \( x^{90} = (x^3)^{30} = (-2)^{30} = 1073741824 \) - \( x^{100} = (x^{3})^{33} \cdot x = 1073741824 \cdot x \) (but we will not need the exact value) - \( x^{103} = (x^{3})^{34} \cdot x = 1073741824 \cdot x \) ### Step 5: Combine the results Now we can combine the results: \[ x^{103} + x^{100} + x^{90} + x^{87} + x^{60} + x^{57} + x^{9} + x^{6} + x^{3} + 3 \] Substituting the values we calculated: \[ (-2) + 4 + (-8) + 3 + 1048576 + (-2097152) + (-8) + 4 + (-2) + 3 \] This simplifies to: \[ -2 + 4 - 8 + 3 + 1048576 - 2097152 - 8 + 4 - 2 + 3 = 2 \] ### Final Result Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x)=1 , find x^(9) + (1)/(x^(9))=

If 3x + (1)/(x) = 6 , then find 9x^(2) + (1)/(x^(2)) .

If x+(1)/(x)=7 ,then find x^(3)-(1)/(x^(3))

If x+(1)/(x)=4 , then find x^(3)+(1)/(x^(3))

If x+ (1)/(x)=3 , then x^(6) + (1)/(x^(6))= ?