Home
Class 14
MATHS
If x+ (1)/(x)= -1 find x^(27) + (1)/...

If `x+ (1)/(x)= -1` find
`x^(27) + (1)/(x^(27)) =` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = -1 \) and find \( x^{27} + \frac{1}{x^{27}} \), we can follow these steps: ### Step 1: Cube both sides of the equation Starting with the equation: \[ x + \frac{1}{x} = -1 \] We will cube both sides: \[ \left( x + \frac{1}{x} \right)^3 = (-1)^3 \] ### Step 2: Apply the identity for cubing a binomial Using the identity \( (a + b)^3 = a^3 + b^3 + 3ab(a + b) \), where \( a = x \) and \( b = \frac{1}{x} \): \[ x^3 + \frac{1}{x^3} + 3 \left( x \cdot \frac{1}{x} \right) \left( x + \frac{1}{x} \right) = -1 \] Since \( x \cdot \frac{1}{x} = 1 \), we can simplify: \[ x^3 + \frac{1}{x^3} + 3 \cdot 1 \cdot (-1) = -1 \] This simplifies to: \[ x^3 + \frac{1}{x^3} - 3 = -1 \] ### Step 3: Solve for \( x^3 + \frac{1}{x^3} \) Rearranging the equation gives: \[ x^3 + \frac{1}{x^3} = -1 + 3 \] Thus: \[ x^3 + \frac{1}{x^3} = 2 \] ### Step 4: Find \( x^9 + \frac{1}{x^9} \) Next, we need to find \( x^9 + \frac{1}{x^9} \). We can use the identity again: \[ \left( x^3 + \frac{1}{x^3} \right)^3 = x^9 + \frac{1}{x^9} + 3 \left( x^3 \cdot \frac{1}{x^3} \right) \left( x^3 + \frac{1}{x^3} \right) \] Substituting \( x^3 + \frac{1}{x^3} = 2 \): \[ 2^3 = x^9 + \frac{1}{x^9} + 3 \cdot 1 \cdot 2 \] This simplifies to: \[ 8 = x^9 + \frac{1}{x^9} + 6 \] Rearranging gives: \[ x^9 + \frac{1}{x^9} = 8 - 6 = 2 \] ### Step 5: Find \( x^{27} + \frac{1}{x^{27}} \) Now we can find \( x^{27} + \frac{1}{x^{27}} \) using the same identity: \[ \left( x^9 + \frac{1}{x^9} \right)^3 = x^{27} + \frac{1}{x^{27}} + 3 \left( x^9 \cdot \frac{1}{x^9} \right) \left( x^9 + \frac{1}{x^9} \right) \] Substituting \( x^9 + \frac{1}{x^9} = 2 \): \[ 2^3 = x^{27} + \frac{1}{x^{27}} + 3 \cdot 1 \cdot 2 \] This simplifies to: \[ 8 = x^{27} + \frac{1}{x^{27}} + 6 \] Rearranging gives: \[ x^{27} + \frac{1}{x^{27}} = 8 - 6 = 2 \] ### Final Answer Thus, the final result is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x + (1)/(x)=1 , find x^(82) + x^(68) + x^(55) + x^(35) +x^(30) + x^(27) + x^(21) + x^(3) + 2 =?

If x+(1)/(x)=5, then x^(2)+(1)/(x^(2))=25 (b) 10 (c) 23 (d) 27

If (x+(1)/(x))=3, then (x^(2)+(1)/(x^(2)))=?( a )7( b) 9(c)10(d)27

If 27^(x)=(9)/(3^(x)), find x

lim_ (x rarr oo) ((2 ^ ((1) / (x)) + 27 ^ ((1) / (x)) + 8 ^ ((1) / (x))) / (3)) ^ (x)