Home
Class 14
MATHS
If x+ (1)/(x)= -1 find x^(25) + (1)/...

If `x+ (1)/(x)= -1` find
`x^(25) + (1)/(x^(25))=` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = -1 \) and find \( x^{25} + \frac{1}{x^{25}} \), we can follow these steps: ### Step 1: Find \( x^2 + \frac{1}{x^2} \) We start with the given equation: \[ x + \frac{1}{x} = -1 \] We square both sides: \[ \left( x + \frac{1}{x} \right)^2 = (-1)^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 1 \] Subtracting 2 from both sides gives: \[ x^2 + \frac{1}{x^2} = 1 - 2 = -1 \] ### Step 2: Find \( x^3 + \frac{1}{x^3} \) We can use the identity: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right) \left( x^2 + \frac{1}{x^2} \right) - \left( x + \frac{1}{x} \right) \] Substituting the values we found: \[ x^3 + \frac{1}{x^3} = (-1)(-1) - (-1) \] This simplifies to: \[ x^3 + \frac{1}{x^3} = 1 + 1 = 2 \] ### Step 3: Find \( x^4 + \frac{1}{x^4} \) Using the identity: \[ x^4 + \frac{1}{x^4} = \left( x^2 + \frac{1}{x^2} \right)^2 - 2 \] Substituting the value we found: \[ x^4 + \frac{1}{x^4} = (-1)^2 - 2 = 1 - 2 = -1 \] ### Step 4: Find \( x^5 + \frac{1}{x^5} \) Using the identity: \[ x^5 + \frac{1}{x^5} = \left( x + \frac{1}{x} \right) \left( x^4 + \frac{1}{x^4} \right) - \left( x^3 + \frac{1}{x^3} \right) \] Substituting the values: \[ x^5 + \frac{1}{x^5} = (-1)(-1) - 2 = 1 - 2 = -1 \] ### Step 5: Find \( x^{25} + \frac{1}{x^{25}} \) We can continue this process, but we notice a pattern: - \( x + \frac{1}{x} = -1 \) - \( x^2 + \frac{1}{x^2} = -1 \) - \( x^3 + \frac{1}{x^3} = 2 \) - \( x^4 + \frac{1}{x^4} = -1 \) - \( x^5 + \frac{1}{x^5} = -1 \) From this, we can see that every 5th term seems to repeat the values. Specifically: - \( x^1 + \frac{1}{x^1} = -1 \) - \( x^2 + \frac{1}{x^2} = -1 \) - \( x^3 + \frac{1}{x^3} = 2 \) - \( x^4 + \frac{1}{x^4} = -1 \) - \( x^5 + \frac{1}{x^5} = -1 \) Since \( 25 \mod 5 = 0 \), we find: \[ x^{25} + \frac{1}{x^{25}} = x^5 + \frac{1}{x^5} = -1 \] ### Final Answer Thus, the final result is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x)= -sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(25) + (1)/(x^(25))

If 5x - (1)/(2x) = 3 , then find 25x^(2) + (1)/(4x^(2)) .

If x+(1)/(x)=5, then x^(2)+(1)/(x^(2))=25 (b) 10 (c) 23 (d) 27

(x-1)/(x^(2)+5x)-(x+1)/(x^(2)-25)

If 125^(x)=(25)/(5^(x)), find x

If x^((1)/(12)) = 49^((1)/(24)) find the value of x. (ii) If (125)^(x) =(25)/(5^(x)) , find x.

int(1)/(2x^(2)-8x+25)