Home
Class 14
MATHS
If x+ (1)/(x)= -1 find x^(10) + (1)/...

If `x+ (1)/(x)= -1` find
`x^(10) + (1)/(x^(10))`=?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = -1 \) and find \( x^{10} + \frac{1}{x^{10}} \), we can follow these steps: ### Step 1: Cube both sides of the equation We start with the equation: \[ x + \frac{1}{x} = -1 \] Now, we will cube both sides: \[ \left( x + \frac{1}{x} \right)^3 = (-1)^3 \] This simplifies to: \[ x^3 + 3x\left(\frac{1}{x}\right)(x + \frac{1}{x}) + \frac{1}{x^3} = -1 \] ### Step 2: Simplify the equation Using the identity \( a^3 + b^3 + 3ab(a + b) \): \[ x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) = -1 \] Substituting \( x + \frac{1}{x} = -1 \): \[ x^3 + \frac{1}{x^3} + 3(-1) = -1 \] This simplifies to: \[ x^3 + \frac{1}{x^3} - 3 = -1 \] Thus: \[ x^3 + \frac{1}{x^3} = -1 + 3 = 2 \] ### Step 3: Find \( x^6 + \frac{1}{x^6} \) Now, we will find \( x^6 + \frac{1}{x^6} \) using the identity: \[ x^6 + \frac{1}{x^6} = \left( x^3 + \frac{1}{x^3} \right)^2 - 2 \] Substituting \( x^3 + \frac{1}{x^3} = 2 \): \[ x^6 + \frac{1}{x^6} = 2^2 - 2 = 4 - 2 = 2 \] ### Step 4: Find \( x^{10} + \frac{1}{x^{10}} \) Next, we will find \( x^{10} + \frac{1}{x^{10}} \) using the identity: \[ x^{10} + \frac{1}{x^{10}} = (x^6 + \frac{1}{x^6})(x^4 + \frac{1}{x^4}) - (x^2 + \frac{1}{x^2}) \] First, we need \( x^4 + \frac{1}{x^4} \): \[ x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2 \] We find \( x^2 + \frac{1}{x^2} \) using: \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 = (-1)^2 - 2 = 1 - 2 = -1 \] Now substituting back: \[ x^4 + \frac{1}{x^4} = (-1)^2 - 2 = 1 - 2 = -1 \] ### Step 5: Substitute values into the equation for \( x^{10} + \frac{1}{x^{10}} \) Now we can substitute: \[ x^{10} + \frac{1}{x^{10}} = (2)(-1) - (-1) = -2 + 1 = -1 \] ### Final Answer Thus, the value of \( x^{10} + \frac{1}{x^{10}} \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If the average of x and 1/x be 1 , then the value of x^(10) +(1)/(x^(10)) is

Find the coefficient of x^(8) in the expansion of (x^(2)-(1)/(x))^(10)

(i) If (1)/(9!)+(1)/(10!)=(n)/(11!) , find n. (ii) If (1)/(8!)+(1)/(9!)=(x)/(10!) , find x.

lim_ (x rarr oo) ((x + 2) ^ (10) + (x + 4) ^ (10) ++ (x + 20) ^ (10)) / (x ^ (10) +1) =

Lim_(x rarr1)(x^(15)-1)/(x^(10)-1)

If (x^2 +frac(1)(x^2))=6 ,then find the value of (10x-frac(10)(x))