Home
Class 14
MATHS
If x+ (1)/(x)= -1 find x^(51) + x^(4...

If `x+ (1)/(x)= -1` find
`x^(51) + x^(45) + x^(21) + x^(15) + x^(3) + 2`= ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = -1 \) and find the value of \( x^{51} + x^{45} + x^{21} + x^{15} + x^{3} + 2 \), we can follow these steps: ### Step 1: Rewrite the given equation We start with the equation: \[ x + \frac{1}{x} = -1 \] Multiplying both sides by \( x \) gives: \[ x^2 + 1 = -x \] Rearranging this, we have: \[ x^2 + x + 1 = 0 \] ### Step 2: Solve the quadratic equation To solve the quadratic equation \( x^2 + x + 1 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 1, c = 1 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} \] This simplifies to: \[ x = \frac{-1 \pm i\sqrt{3}}{2} \] ### Step 3: Find \( x^3 \) Next, we can find \( x^3 \) using the fact that \( x^2 + x + 1 = 0 \): \[ x^3 = - (x^2 + x) = -(-1) = 1 \] Thus, we have: \[ x^3 = 1 \] ### Step 4: Reduce the powers of \( x \) Since \( x^3 = 1 \), we can reduce the powers of \( x \) in the expression \( x^{51} + x^{45} + x^{21} + x^{15} + x^{3} + 2 \): - \( x^{51} = (x^3)^{17} = 1^{17} = 1 \) - \( x^{45} = (x^3)^{15} = 1^{15} = 1 \) - \( x^{21} = (x^3)^{7} = 1^{7} = 1 \) - \( x^{15} = (x^3)^{5} = 1^{5} = 1 \) - \( x^{3} = 1 \) ### Step 5: Substitute back into the expression Now substituting these values back into the expression: \[ x^{51} + x^{45} + x^{21} + x^{15} + x^{3} + 2 = 1 + 1 + 1 + 1 + 1 + 2 \] Calculating this gives: \[ 1 + 1 + 1 + 1 + 1 + 2 = 7 \] ### Final Answer Thus, the final answer is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x + (1)/(x)=1 , find x^(82) + x^(68) + x^(55) + x^(35) +x^(30) + x^(27) + x^(21) + x^(3) + 2 =?

If x+(1)/(x)=3, then find x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

If x +(1)/(x) =2 , find the value of (x^2 +(1)/(x^2))(x^3 +(1)/(x^3))

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If x+(1)/(x)=1 then x^(52)+x^(46)+x^(32)+x^(26)+x^(21)+x^(15)+x^(6)+x^(3)+4 is equal to

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If (x-(1)/(x))=15 , then find the value of (x^(2)+(1)/(x^(2)))

If x - (1)/( x) = sqrt21, then the value of (x ^(2) + (1)/( x ^(2))) (x + (1)/(x)) is

If (x +1/x) = 2 , then find the value of (x^3 + 1//x^3) + (x^(18) + 1//x^(18))