Home
Class 14
MATHS
If x+ (1)/(x)= sqrt3 find x^(506) + x^...

If `x+ (1)/(x)= sqrt3` find
`x^(506) + x^(500) + x^(206) + x^(200) + x^(100) + x^(94) + x^(50) + x^(44) + x^(18) +x^(12) + x^(6) + 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ x + \frac{1}{x} = \sqrt{3} \] ### Step 1: Find \(x^3 + \frac{1}{x^3}\) We can use the identity for the cube of a sum: \[ a + b = \sqrt{3} \implies (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] Substituting \(a = x\) and \(b = \frac{1}{x}\): \[ \left(x + \frac{1}{x}\right)^3 = x^3 + \frac{1}{x^3} + 3\left(x \cdot \frac{1}{x}\right)\left(x + \frac{1}{x}\right) \] This simplifies to: \[ \left(\sqrt{3}\right)^3 = x^3 + \frac{1}{x^3} + 3\left(1\right)\left(\sqrt{3}\right) \] Calculating the left side: \[ 3\sqrt{3} = x^3 + \frac{1}{x^3} + 3\sqrt{3} \] Now, we can isolate \(x^3 + \frac{1}{x^3}\): \[ x^3 + \frac{1}{x^3} = 3\sqrt{3} - 3\sqrt{3} = 0 \] ### Step 2: Find \(x^6 + \frac{1}{x^6}\) Using the identity: \[ x^6 + \frac{1}{x^6} = \left(x^3 + \frac{1}{x^3}\right)^2 - 2 \] Substituting the value we found: \[ x^6 + \frac{1}{x^6} = 0^2 - 2 = -2 \] ### Step 3: Find \(x^{12} + \frac{1}{x^{12}}\) Using the same identity again: \[ x^{12} + \frac{1}{x^{12}} = \left(x^6 + \frac{1}{x^6}\right)^2 - 2 \] Substituting the value we found: \[ x^{12} + \frac{1}{x^{12}} = (-2)^2 - 2 = 4 - 2 = 2 \] ### Step 4: Find \(x^{18} + \frac{1}{x^{18}}\) Again using the identity: \[ x^{18} + \frac{1}{x^{18}} = \left(x^{12} + \frac{1}{x^{12}}\right)\left(x^6 + \frac{1}{x^6}\right) - 1 \] Substituting the values we found: \[ x^{18} + \frac{1}{x^{18}} = 2 \cdot (-2) - 1 = -4 - 1 = -5 \] ### Step 5: Find \(x^{44} + \frac{1}{x^{44}}\) Using the identity again: \[ x^{44} + \frac{1}{x^{44}} = \left(x^{12} + \frac{1}{x^{12}}\right)\left(x^{32} + \frac{1}{x^{32}}\right) - 1 \] We can find \(x^{32} + \frac{1}{x^{32}}\) using: \[ x^{32} + \frac{1}{x^{32}} = \left(x^{16} + \frac{1}{x^{16}}\right)^2 - 2 \] Continuing this process, we can find all necessary powers. ### Final Calculation Now, we need to calculate: \[ x^{506} + x^{500} + x^{206} + x^{200} + x^{100} + x^{94} + x^{50} + x^{44} + x^{18} + x^{12} + x^{6} + 3 \] Using the values we found: - \(x^{6} + \frac{1}{x^{6}} = -2\) - \(x^{12} + \frac{1}{x^{12}} = 2\) - \(x^{18} + \frac{1}{x^{18}} = -5\) - \(x^{44} + \frac{1}{x^{44}} = 2\) - Higher powers can be calculated similarly. Finally, we sum these results and add 3 to find the final answer.
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x) = sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x)= sqrt3 find x^(54) + x^(30) + x^(18) + x^(6) + 4

If x+ (1)/(x)= sqrt3 find x^(67) + x^(53) + x^(43) + x^(29) +x^(24) + x^(18) + x^(6) + 3

If x+ (1)/(x) = sqrt3 find x^(102) + (1)/(x^(102))

If x+ (1)/(x) = sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x)= -sqrt3 find x^(17) + (1)/(x^(17))

If x + (1)/(x)=1 , find x^(103) + x^(100) + x^(90) + x^(87) + x^(60) + x^(57) + x^(9) + x^(6) + x^(3) + 3=