Home
Class 14
MATHS
If x+ (1)/(x) = sqrt3 find x^(102) + ...

If `x+ (1)/(x) = sqrt3` find
`x^(102) + (1)/(x^(102))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( x^{102} + \frac{1}{x^{102}} \) given that \( x + \frac{1}{x} = \sqrt{3} \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ x + \frac{1}{x} = \sqrt{3} \] 2. **Cube both sides:** \[ \left( x + \frac{1}{x} \right)^3 = (\sqrt{3})^3 \] This simplifies to: \[ x^3 + 3x \cdot \frac{1}{x}(x + \frac{1}{x}) + \frac{1}{x^3} = 3\sqrt{3} \] Which can be rewritten as: \[ x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) = 3\sqrt{3} \] 3. **Substitute \( x + \frac{1}{x} \):** Substitute \( \sqrt{3} \) into the equation: \[ x^3 + \frac{1}{x^3} + 3\sqrt{3} = 3\sqrt{3} \] 4. **Simplify the equation:** \[ x^3 + \frac{1}{x^3} = 3\sqrt{3} - 3\sqrt{3} = 0 \] 5. **Now we know:** \[ x^3 + \frac{1}{x^3} = 0 \] 6. **Next, we need to find \( x^{102} + \frac{1}{x^{102}} \):** We can express \( x^{102} \) in terms of \( x^3 \): \[ x^{102} = (x^3)^{34} \quad \text{and} \quad \frac{1}{x^{102}} = \left( \frac{1}{x^3} \right)^{34} \] 7. **Using the result from step 4:** Since \( x^3 + \frac{1}{x^3} = 0 \), we can find: \[ x^{102} + \frac{1}{x^{102}} = (x^3)^{34} + \left( \frac{1}{x^3} \right)^{34} \] 8. **Evaluate \( (x^3)^{34} + \left( \frac{1}{x^3} \right)^{34} \):** Since \( x^3 + \frac{1}{x^3} = 0 \), we can deduce: \[ (x^3)^{34} + \left( \frac{1}{x^3} \right)^{34} = 0^{34} = 0 \] 9. **Final result:** Therefore, we conclude: \[ x^{102} + \frac{1}{x^{102}} = -2 \] ### Final Answer: \[ x^{102} + \frac{1}{x^{102}} = -2 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x) = sqrt3 find x^(117) + (1)/(x^(117))

If x+ (1)/(x) = sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(26) + (1)/(x^(26))

If x+ (1)/(x)= -sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x)= -sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(48)+ (1)/(x^(48))

If x+ (1)/(x)= sqrt3 find x^(54) + x^(30) + x^(18) + x^(6) + 4

If x=(1)/(sqrt(3)-sqrt(2)) find x+(1)/(x)