Home
Class 14
MATHS
If x+ (1)/(x) = sqrt3 find x^(48)+ (1...

If `x+ (1)/(x) = sqrt3` find
`x^(48)+ (1)/(x^(48))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: 1. **Given Equation**: \[ x + \frac{1}{x} = \sqrt{3} \] 2. **Cube Both Sides**: We will cube both sides of the equation: \[ \left(x + \frac{1}{x}\right)^3 = \left(\sqrt{3}\right)^3 \] 3. **Expand Using the Formula**: Using the identity \( (a + b)^3 = a^3 + b^3 + 3ab(a + b) \), we can rewrite the left side: \[ x^3 + \frac{1}{x^3} + 3\left(x \cdot \frac{1}{x}\right)\left(x + \frac{1}{x}\right) = 3\sqrt{3} \] Since \( x \cdot \frac{1}{x} = 1 \), this simplifies to: \[ x^3 + \frac{1}{x^3} + 3\sqrt{3} = 3\sqrt{3} \] 4. **Isolate \( x^3 + \frac{1}{x^3} \)**: Now, we can isolate \( x^3 + \frac{1}{x^3} \): \[ x^3 + \frac{1}{x^3} = 3\sqrt{3} - 3\sqrt{3} = 0 \] 5. **Find \( x^6 + \frac{1}{x^6} \)**: We can use the identity \( x^3 + \frac{1}{x^3} \) to find \( x^6 + \frac{1}{x^6} \): \[ \left(x^3 + \frac{1}{x^3}\right)^2 = x^6 + \frac{1}{x^6} + 2 \] Substituting \( x^3 + \frac{1}{x^3} = 0 \): \[ 0^2 = x^6 + \frac{1}{x^6} + 2 \] Therefore: \[ x^6 + \frac{1}{x^6} = -2 \] 6. **Find \( x^{12} + \frac{1}{x^{12}} \)**: Again, using the identity: \[ \left(x^6 + \frac{1}{x^6}\right)^2 = x^{12} + \frac{1}{x^{12}} + 2 \] Substituting \( x^6 + \frac{1}{x^6} = -2 \): \[ (-2)^2 = x^{12} + \frac{1}{x^{12}} + 2 \] Therefore: \[ 4 = x^{12} + \frac{1}{x^{12}} + 2 \] So: \[ x^{12} + \frac{1}{x^{12}} = 2 \] 7. **Find \( x^{24} + \frac{1}{x^{24}} \)**: Using the same identity: \[ \left(x^{12} + \frac{1}{x^{12}}\right)^2 = x^{24} + \frac{1}{x^{24}} + 2 \] Substituting \( x^{12} + \frac{1}{x^{12}} = 2 \): \[ 2^2 = x^{24} + \frac{1}{x^{24}} + 2 \] Therefore: \[ 4 = x^{24} + \frac{1}{x^{24}} + 2 \] So: \[ x^{24} + \frac{1}{x^{24}} = 2 \] 8. **Find \( x^{48} + \frac{1}{x^{48}} \)**: Finally, using the same identity: \[ \left(x^{24} + \frac{1}{x^{24}}\right)^2 = x^{48} + \frac{1}{x^{48}} + 2 \] Substituting \( x^{24} + \frac{1}{x^{24}} = 2 \): \[ 2^2 = x^{48} + \frac{1}{x^{48}} + 2 \] Therefore: \[ 4 = x^{48} + \frac{1}{x^{48}} + 2 \] So: \[ x^{48} + \frac{1}{x^{48}} = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x) = sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(26) + (1)/(x^(26))

If x+ (1)/(x)= -sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x)= -sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(102) + (1)/(x^(102))

If x+ (1)/(x) = sqrt3 find x^(117) + (1)/(x^(117))

If x+ (1)/(x)= sqrt3 find x^(54) + x^(30) + x^(18) + x^(6) + 4

If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) , find the value of x^(3) + (1)/(x^(3)) .