Home
Class 14
MATHS
If x+ (1)/(x) = sqrt3 find x^(25) + (...

If `x+ (1)/(x) = sqrt3` find
`x^(25) + (1)/(x^(25))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + \frac{1}{x} = \sqrt{3} \) and we need to find \( x^{25} + \frac{1}{x^{25}} \), we can follow these steps: ### Step 1: Find \( x^2 + \frac{1}{x^2} \) We start with the identity: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] Substituting \( x + \frac{1}{x} = \sqrt{3} \): \[ \left( \sqrt{3} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] \[ 3 = x^2 + 2 + \frac{1}{x^2} \] Rearranging gives: \[ x^2 + \frac{1}{x^2} = 3 - 2 = 1 \] ### Step 2: Find \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right) \left( x^2 + \frac{1}{x^2} \right) - \left( x + \frac{1}{x} \right) \] Substituting the known values: \[ x^3 + \frac{1}{x^3} = \sqrt{3} \cdot 1 - \sqrt{3} = 0 \] ### Step 3: Find \( x^6 + \frac{1}{x^6} \) Using the identity: \[ x^6 + \frac{1}{x^6} = \left( x^3 + \frac{1}{x^3} \right)^2 - 2 \] Substituting \( x^3 + \frac{1}{x^3} = 0 \): \[ x^6 + \frac{1}{x^6} = 0^2 - 2 = -2 \] ### Step 4: Find \( x^9 + \frac{1}{x^9} \) Using the identity: \[ x^9 + \frac{1}{x^9} = \left( x^6 + \frac{1}{x^6} \right) \left( x^3 + \frac{1}{x^3} \right) - \left( x^3 + \frac{1}{x^3} \right) \] Substituting the known values: \[ x^9 + \frac{1}{x^9} = (-2)(0) - 0 = 0 \] ### Step 5: Find \( x^{12} + \frac{1}{x^{12}} \) Using the identity: \[ x^{12} + \frac{1}{x^{12}} = \left( x^6 + \frac{1}{x^6} \right)^2 - 2 \] Substituting \( x^6 + \frac{1}{x^6} = -2 \): \[ x^{12} + \frac{1}{x^{12}} = (-2)^2 - 2 = 4 - 2 = 2 \] ### Step 6: Find \( x^{15} + \frac{1}{x^{15}} \) Using the identity: \[ x^{15} + \frac{1}{x^{15}} = \left( x^{12} + \frac{1}{x^{12}} \right) \left( x^3 + \frac{1}{x^3} \right) - \left( x^3 + \frac{1}{x^3} \right) \] Substituting the known values: \[ x^{15} + \frac{1}{x^{15}} = (2)(0) - 0 = 0 \] ### Step 7: Find \( x^{24} + \frac{1}{x^{24}} \) Using the identity: \[ x^{24} + \frac{1}{x^{24}} = \left( x^{12} + \frac{1}{x^{12}} \right)^2 - 2 \] Substituting \( x^{12} + \frac{1}{x^{12}} = 2 \): \[ x^{24} + \frac{1}{x^{24}} = 2^2 - 2 = 4 - 2 = 2 \] ### Step 8: Find \( x^{25} + \frac{1}{x^{25}} \) Using the identity: \[ x^{25} + \frac{1}{x^{25}} = \left( x^{24} + \frac{1}{x^{24}} \right) \left( x + \frac{1}{x} \right) - \left( x^{23} + \frac{1}{x^{23}} \right) \] We know \( x^{24} + \frac{1}{x^{24}} = 2 \) and \( x + \frac{1}{x} = \sqrt{3} \), and from previous calculations \( x^{23} + \frac{1}{x^{23}} = 0 \): \[ x^{25} + \frac{1}{x^{25}} = 2 \cdot \sqrt{3} - 0 = 2\sqrt{3} \] Thus, the final answer is: \[ \boxed{2\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x) = sqrt3 find x^(26) + (1)/(x^(26))

If x+ (1)/(x) = sqrt3 find x^(102) + (1)/(x^(102))

If x+ (1)/(x) = sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(117) + (1)/(x^(117))

If x+ (1)/(x)= -sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(48)+ (1)/(x^(48))

If x+ (1)/(x)= -1 find x^(25) + (1)/(x^(25))= ?

If 5x - (1)/(2x) = 3 , then find 25x^(2) + (1)/(4x^(2)) .

If x+ (1)/(x)= sqrt3 find x^(54) + x^(30) + x^(18) + x^(6) + 4