Home
Class 14
MATHS
If x+ (1)/(x) = sqrt3 find x^(26) + (...

If `x+ (1)/(x) = sqrt3` find
`x^(26) + (1)/(x^(26))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^{26} + \frac{1}{x^{26}} \) given that \( x + \frac{1}{x} = \sqrt{3} \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + \frac{1}{x} = \sqrt{3} \] 2. **Square both sides**: \[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{3})^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 3 \] 3. **Rearrange to find \( x^2 + \frac{1}{x^2} \)**: \[ x^2 + \frac{1}{x^2} = 3 - 2 = 1 \] 4. **Next, we need to find \( x^4 + \frac{1}{x^4} \)**. We can use the identity: \[ x^4 + \frac{1}{x^4} = \left( x^2 + \frac{1}{x^2} \right)^2 - 2 \] Substituting the value we found: \[ x^4 + \frac{1}{x^4} = 1^2 - 2 = 1 - 2 = -1 \] 5. **Now, we find \( x^8 + \frac{1}{x^8} \)** using the same identity: \[ x^8 + \frac{1}{x^8} = \left( x^4 + \frac{1}{x^4} \right)^2 - 2 \] Substituting the value we found: \[ x^8 + \frac{1}{x^8} = (-1)^2 - 2 = 1 - 2 = -1 \] 6. **Next, we find \( x^{16} + \frac{1}{x^{16}} \)**: \[ x^{16} + \frac{1}{x^{16}} = \left( x^8 + \frac{1}{x^8} \right)^2 - 2 \] Substituting the value we found: \[ x^{16} + \frac{1}{x^{16}} = (-1)^2 - 2 = 1 - 2 = -1 \] 7. **Finally, we can find \( x^{26} + \frac{1}{x^{26}} \)**: We can express \( x^{26} + \frac{1}{x^{26}} \) as: \[ x^{26} + \frac{1}{x^{26}} = x^{16} \cdot x^{8} \cdot x^{2} + \frac{1}{x^{16} \cdot x^{8} \cdot x^{2}} = (x^{16} + \frac{1}{x^{16}})(x^8 + \frac{1}{x^8}) - (x^4 + \frac{1}{x^4}) \] Substituting the values we found: \[ x^{26} + \frac{1}{x^{26}} = (-1)(-1) - (-1) = 1 + 1 = 2 \] ### Conclusion: Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x) = sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(102) + (1)/(x^(102))

If x+ (1)/(x)= -sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(117) + (1)/(x^(117))

If x+ (1)/(x)= -sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(48)+ (1)/(x^(48))

If x+ (1)/(x)= sqrt3 find x^(54) + x^(30) + x^(18) + x^(6) + 4

If x+(1)/(x)=1 then x^(52)+x^(46)+x^(32)+x^(26)+x^(21)+x^(15)+x^(6)+x^(3)+4 is equal to

If x=(1)/(2-sqrt(3)) then find the value of x+(1)/(x)