Home
Class 14
MATHS
If x+ (1)/(x) = sqrt3 find x^(117) + (...

If `x+ (1)/(x) = sqrt3` find
`x^(117) + (1)/(x^(117))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: ### Step 1: Start with the equation Given: \[ x + \frac{1}{x} = \sqrt{3} \] ### Step 2: Cube both sides We will cube both sides of the equation: \[ \left(x + \frac{1}{x}\right)^3 = \left(\sqrt{3}\right)^3 \] This simplifies to: \[ x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) = 3\sqrt{3} \] ### Step 3: Substitute the value of \(x + \frac{1}{x}\) Substituting \(\sqrt{3}\) into the equation: \[ x^3 + \frac{1}{x^3} + 3\sqrt{3} = 3\sqrt{3} \] ### Step 4: Solve for \(x^3 + \frac{1}{x^3}\) Now, we can isolate \(x^3 + \frac{1}{x^3}\): \[ x^3 + \frac{1}{x^3} = 3\sqrt{3} - 3\sqrt{3} = 0 \] ### Step 5: Find \(x^{117} + \frac{1}{x^{117}}\) Since we know \(x^3 + \frac{1}{x^3} = 0\), we can express \(x^{117} + \frac{1}{x^{117}}\) in terms of powers of \(x^3\): \[ x^{117} + \frac{1}{x^{117}} = \left(x^3\right)^{39} + \frac{1}{\left(x^3\right)^{39}} = x^{117} + \frac{1}{x^{117}} \] ### Step 6: Use the property of powers Using the property of powers: \[ x^{117} + \frac{1}{x^{117}} = \left(x^3\right)^{39} + \frac{1}{\left(x^3\right)^{39}} = 0 \] ### Final Answer Thus, the final result is: \[ x^{117} + \frac{1}{x^{117}} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+ (1)/(x) = sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x)= -sqrt3 find x^(17) + (1)/(x^(17))

If x+ (1)/(x) = sqrt3 find x^(102) + (1)/(x^(102))

If x+ (1)/(x) = sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(26) + (1)/(x^(26))

If x+ (1)/(x)= -sqrt3 find x^(25) + (1)/(x^(25))

If x+ (1)/(x) = sqrt3 find x^(48)+ (1)/(x^(48))

If x+ (1)/(x)= sqrt3 find x^(54) + x^(30) + x^(18) + x^(6) + 4

If x+ (1)/(x)= sqrt3 find x^(67) + x^(53) + x^(43) + x^(29) +x^(24) + x^(18) + x^(6) + 3