Home
Class 14
MATHS
If x+ (1)/(x)= -sqrt3 find x^(17) + (...

If `x+ (1)/(x)= -sqrt3` find
`x^(17) + (1)/(x^(17))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + \frac{1}{x} = -\sqrt{3} \) and we need to find \( x^{17} + \frac{1}{x^{17}} \), we can follow these steps: ### Step 1: Cube the given equation We start with the equation: \[ x + \frac{1}{x} = -\sqrt{3} \] Now, we will cube both sides: \[ \left( x + \frac{1}{x} \right)^3 = (-\sqrt{3})^3 \] Calculating the right side: \[ (-\sqrt{3})^3 = -3\sqrt{3} \] ### Step 2: Apply the cube expansion formula Using the formula \( (a + b)^3 = a^3 + b^3 + 3ab(a + b) \): \[ x^3 + \frac{1}{x^3} + 3 \left( x \cdot \frac{1}{x} \right) \left( x + \frac{1}{x} \right) = -3\sqrt{3} \] Since \( x \cdot \frac{1}{x} = 1 \), we can simplify: \[ x^3 + \frac{1}{x^3} + 3(-\sqrt{3}) = -3\sqrt{3} \] This simplifies to: \[ x^3 + \frac{1}{x^3} - 3\sqrt{3} = -3\sqrt{3} \] Thus: \[ x^3 + \frac{1}{x^3} = -3\sqrt{3} + 3\sqrt{3} = 0 \] ### Step 3: Find \( x^6 + \frac{1}{x^6} \) Now we use the identity: \[ x^6 + \frac{1}{x^6} = \left( x^3 + \frac{1}{x^3} \right)^2 - 2 \] Substituting the value we found: \[ x^6 + \frac{1}{x^6} = 0^2 - 2 = -2 \] ### Step 4: Find \( x^{12} + \frac{1}{x^{12}} \) Next, we find \( x^{12} + \frac{1}{x^{12}} \) using: \[ x^{12} + \frac{1}{x^{12}} = \left( x^6 + \frac{1}{x^6} \right)^2 - 2 \] Substituting the value we found: \[ x^{12} + \frac{1}{x^{12}} = (-2)^2 - 2 = 4 - 2 = 2 \] ### Step 5: Find \( x^{17} + \frac{1}{x^{17}} \) Now, we can find \( x^{17} + \frac{1}{x^{17}} \) using: \[ x^{17} + \frac{1}{x^{17}} = \left( x^{12} + \frac{1}{x^{12}} \right) \left( x^5 + \frac{1}{x^5} \right) - \left( x^{7} + \frac{1}{x^{7}} \right) \] First, we need \( x^5 + \frac{1}{x^5} \) and \( x^7 + \frac{1}{x^7} \). ### Step 6: Find \( x^5 + \frac{1}{x^5} \) Using the identity: \[ x^5 + \frac{1}{x^5} = (x^3 + \frac{1}{x^3})(x^2 + \frac{1}{x^2}) - (x + \frac{1}{x}) \] We need \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 = (-\sqrt{3})^2 - 2 = 3 - 2 = 1 \] Now substituting: \[ x^5 + \frac{1}{x^5} = (0)(1) - (-\sqrt{3}) = \sqrt{3} \] ### Step 7: Find \( x^7 + \frac{1}{x^7} \) Using: \[ x^7 + \frac{1}{x^7} = (x^6 + \frac{1}{x^6})(x + \frac{1}{x}) - (x^5 + \frac{1}{x^5}) \] Substituting: \[ x^7 + \frac{1}{x^7} = (-2)(-\sqrt{3}) - \sqrt{3} = 2\sqrt{3} - \sqrt{3} = \sqrt{3} \] ### Step 8: Final calculation for \( x^{17} + \frac{1}{x^{17}} \) Now substituting back: \[ x^{17} + \frac{1}{x^{17}} = (2)(\sqrt{3}) - (\sqrt{3}) = 2\sqrt{3} - \sqrt{3} = \sqrt{3} \] ### Final Answer Thus, the value of \( x^{17} + \frac{1}{x^{17}} \) is: \[ \boxed{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x=(1)/(sqrt(3)-sqrt(2)) find x+(1)/(x)

If x+(1)/(x)=17 , what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

If x^(2)+(1)/(x^(2))=(17)/(4), then find x-(1)/(x),x+(1)/(x),x^(3)-(1)/(x^(3)) and x^(3)+(1)/(x^(3))

If 2=x+(1)/(1+(1)/(3+(1)/(4))), then the value of x is (12)/(17) (b) (13)/(17) (c) (18)/(17) (d) (21)/(17)

Solve for x : (x + 3)/(x - 2) - (1 - x)/(x) = (17)/(4) , x - 0 , 2

If x is an integer such that x+(1)/(x)=(17)/(4) find the value of x-(1)/(x)

The coefficient of x^(-17) in the expansion of (x^(4)-(1)/(x^(3)))^(15) is

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If x+ (1)/(x) = sqrt3 find x^(26) + (1)/(x^(26))

    Text Solution

    |

  2. If x+ (1)/(x) = sqrt3 find x^(117) + (1)/(x^(117))

    Text Solution

    |

  3. If x+ (1)/(x)= -sqrt3 find x^(17) + (1)/(x^(17))

    Text Solution

    |

  4. If x+ (1)/(x)= -sqrt3 find x^(25) + (1)/(x^(25))

    Text Solution

    |

  5. If x+ (1)/(x)=3, then x^(2) + (1)/(x^(2))=?

    Text Solution

    |

  6. If x+ (1)/(x)=3, then x^(3) + (1)/(x^(3))=?

    Text Solution

    |

  7. If x+ (1)/(x)=3, then x^(4) + (1)/(x^(4))= ?

    Text Solution

    |

  8. If x+ (1)/(x)=3, then x^(5) + (1)/(x^(5))= ?

    Text Solution

    |

  9. If x+ (1)/(x)=3, then x^(6) + (1)/(x^(6))=?

    Text Solution

    |

  10. If (x^(2)-1)/(x)=sqrt5 and x is positive number find (x^(2) + (1)/(x...

    Text Solution

    |

  11. If x^(4) + (1)/(x^(4)) = 322 find x^(3)- (1)/(x^(3))= ?

    Text Solution

    |

  12. If (x-a) (x-b)=1 " & " a-b + 5= 0 find (x-a)^(3) - (1)/((x-a)^(3))= ?

    Text Solution

    |

  13. If (x-1)^(2) + (y-2)^(2)= 0 then x+y= ?

    Text Solution

    |

  14. If (a-2)^(2) + (b-3)^(2) + (c-11)^(2)=0 find sqrt(a+b+c)=?

    Text Solution

    |

  15. If a^(2) + b^(2) +c^(2)=2 (a-b +c)-3 then find a-b + c= ?

    Text Solution

    |

  16. If a^(2) + b^(2) + c^(2) = 2(a +2b -2c)-9 then find a+b+c=?

    Text Solution

    |

  17. If 5x^(2) + 4xy + y^(2) + 2x + 1= 0 then find the value of x, y

    Text Solution

    |

  18. If x^(2) + y^(2) + z^(2) + 12x + 4y + 5=0 find x^(12) + y+ z^(30)= ?

    Text Solution

    |

  19. If (x+ y-z -1)^(2) + (z+ x-y - 2)^(2) + (z+y-x-4)^(2)=0 find x+ y+z=?

    Text Solution

    |

  20. If a= 297, b= 298, c= 299 and find a^(2) + b^(2) + c^(2) - ab - bc - c...

    Text Solution

    |