Home
Class 14
MATHS
If x+ (1)/(x)=3, then x^(4) + (1)/(x^...

If `x+ (1)/(x)=3`, then
`x^(4) + (1)/(x^(4))`= ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 3 \) and find \( x^4 + \frac{1}{x^4} \), we can follow these steps: ### Step 1: Square both sides of the equation Starting with the given equation: \[ x + \frac{1}{x} = 3 \] We square both sides: \[ \left(x + \frac{1}{x}\right)^2 = 3^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 9 \] ### Step 2: Rearrange to find \( x^2 + \frac{1}{x^2} \) From the equation obtained in Step 1: \[ x^2 + \frac{1}{x^2} + 2 = 9 \] We can isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 9 - 2 = 7 \] ### Step 3: Square \( x^2 + \frac{1}{x^2} \) Now we need to find \( x^4 + \frac{1}{x^4} \). We can use the identity: \[ \left(x^2 + \frac{1}{x^2}\right)^2 = x^4 + 2 + \frac{1}{x^4} \] Substituting the value we found: \[ 7^2 = x^4 + 2 + \frac{1}{x^4} \] This simplifies to: \[ 49 = x^4 + 2 + \frac{1}{x^4} \] ### Step 4: Rearrange to find \( x^4 + \frac{1}{x^4} \) Now, we can isolate \( x^4 + \frac{1}{x^4} \): \[ x^4 + \frac{1}{x^4} = 49 - 2 = 47 \] ### Final Answer Thus, the value of \( x^4 + \frac{1}{x^4} \) is: \[ \boxed{47} \] ---
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x) =4 , " then " x^(3) + (1)/(x^(3)) is equal to :

If x + ( 1)/( x) = 4 , then x^(3) + ( 1)/( x^(3) is equal to :

If x+(1)/(x)=4 , then find x^(3)+(1)/(x^(3))

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If x+(1)/(x)=3, calcuate x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)) and x^(4)+(1)/(x^(4))

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x^(4)+(1)/(x^(4))=194, find x^(3)+(1)/(x^(3)),x^(2)+(1)/(x^(2)) and x+(1)/(x)

If x<0 and x^(4)+(1)/(x^(4))=47, then the value of x^(3)+(1)/(x^(3)) is

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If x+ (1)/(x)=3, then x^(2) + (1)/(x^(2))=?

    Text Solution

    |

  2. If x+ (1)/(x)=3, then x^(3) + (1)/(x^(3))=?

    Text Solution

    |

  3. If x+ (1)/(x)=3, then x^(4) + (1)/(x^(4))= ?

    Text Solution

    |

  4. If x+ (1)/(x)=3, then x^(5) + (1)/(x^(5))= ?

    Text Solution

    |

  5. If x+ (1)/(x)=3, then x^(6) + (1)/(x^(6))=?

    Text Solution

    |

  6. If (x^(2)-1)/(x)=sqrt5 and x is positive number find (x^(2) + (1)/(x...

    Text Solution

    |

  7. If x^(4) + (1)/(x^(4)) = 322 find x^(3)- (1)/(x^(3))= ?

    Text Solution

    |

  8. If (x-a) (x-b)=1 " & " a-b + 5= 0 find (x-a)^(3) - (1)/((x-a)^(3))= ?

    Text Solution

    |

  9. If (x-1)^(2) + (y-2)^(2)= 0 then x+y= ?

    Text Solution

    |

  10. If (a-2)^(2) + (b-3)^(2) + (c-11)^(2)=0 find sqrt(a+b+c)=?

    Text Solution

    |

  11. If a^(2) + b^(2) +c^(2)=2 (a-b +c)-3 then find a-b + c= ?

    Text Solution

    |

  12. If a^(2) + b^(2) + c^(2) = 2(a +2b -2c)-9 then find a+b+c=?

    Text Solution

    |

  13. If 5x^(2) + 4xy + y^(2) + 2x + 1= 0 then find the value of x, y

    Text Solution

    |

  14. If x^(2) + y^(2) + z^(2) + 12x + 4y + 5=0 find x^(12) + y+ z^(30)= ?

    Text Solution

    |

  15. If (x+ y-z -1)^(2) + (z+ x-y - 2)^(2) + (z+y-x-4)^(2)=0 find x+ y+z=?

    Text Solution

    |

  16. If a= 297, b= 298, c= 299 and find a^(2) + b^(2) + c^(2) - ab - bc - c...

    Text Solution

    |

  17. If a^(2) + b^(2) + c^(2) =ab + bc + ca find (a + c)/(b)= ?

    Text Solution

    |

  18. If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + ...

    Text Solution

    |

  19. If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+...

    Text Solution

    |

  20. If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) ...

    Text Solution

    |