Home
Class 14
MATHS
If x+ (1)/(x)=3, then x^(5) + (1)/(x^...

If `x+ (1)/(x)=3`, then
`x^(5) + (1)/(x^(5))`= ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 3 \) and find \( x^5 + \frac{1}{x^5} \), we can follow these steps: ### Step 1: Define \( y = x + \frac{1}{x} \) We start by defining \( y \) as: \[ y = x + \frac{1}{x} \] From the problem, we know that: \[ y = 3 \] ### Step 2: Find \( x^2 + \frac{1}{x^2} \) We can derive \( x^2 + \frac{1}{x^2} \) using the identity: \[ x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2 \] Substituting \( y \) into the equation: \[ x^2 + \frac{1}{x^2} = y^2 - 2 = 3^2 - 2 = 9 - 2 = 7 \] ### Step 3: Find \( x^3 + \frac{1}{x^3} \) Next, we can find \( x^3 + \frac{1}{x^3} \) using the identity: \[ x^3 + \frac{1}{x^3} = (x + \frac{1}{x})(x^2 + \frac{1}{x^2}) - (x + \frac{1}{x}) \] Substituting the values we have: \[ x^3 + \frac{1}{x^3} = y \cdot (x^2 + \frac{1}{x^2}) - y = 3 \cdot 7 - 3 = 21 - 3 = 18 \] ### Step 4: Find \( x^4 + \frac{1}{x^4} \) Now, we can find \( x^4 + \frac{1}{x^4} \) using: \[ x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2 \] Substituting the value we found: \[ x^4 + \frac{1}{x^4} = 7^2 - 2 = 49 - 2 = 47 \] ### Step 5: Find \( x^5 + \frac{1}{x^5} \) Finally, we can find \( x^5 + \frac{1}{x^5} \) using: \[ x^5 + \frac{1}{x^5} = (x + \frac{1}{x})(x^4 + \frac{1}{x^4}) - (x^3 + \frac{1}{x^3}) \] Substituting the values: \[ x^5 + \frac{1}{x^5} = y \cdot (x^4 + \frac{1}{x^4}) - (x^3 + \frac{1}{x^3}) = 3 \cdot 47 - 18 = 141 - 18 = 123 \] ### Final Answer Thus, the value of \( x^5 + \frac{1}{x^5} \) is: \[ \boxed{123} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x + 1/x = 3 , the value of x^(5) + (1)/(x^5) is

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x+(1)/(x)=3 and x^(2)+(1)/(x^(3))=5 then the value of x^(3)+(1)/(x^(2)) is

If x+1/(x)=5 , then x^(3)+1/(x^(3)) is equal to

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If x+ (1)/(x)=3, then x^(3) + (1)/(x^(3))=?

    Text Solution

    |

  2. If x+ (1)/(x)=3, then x^(4) + (1)/(x^(4))= ?

    Text Solution

    |

  3. If x+ (1)/(x)=3, then x^(5) + (1)/(x^(5))= ?

    Text Solution

    |

  4. If x+ (1)/(x)=3, then x^(6) + (1)/(x^(6))=?

    Text Solution

    |

  5. If (x^(2)-1)/(x)=sqrt5 and x is positive number find (x^(2) + (1)/(x...

    Text Solution

    |

  6. If x^(4) + (1)/(x^(4)) = 322 find x^(3)- (1)/(x^(3))= ?

    Text Solution

    |

  7. If (x-a) (x-b)=1 " & " a-b + 5= 0 find (x-a)^(3) - (1)/((x-a)^(3))= ?

    Text Solution

    |

  8. If (x-1)^(2) + (y-2)^(2)= 0 then x+y= ?

    Text Solution

    |

  9. If (a-2)^(2) + (b-3)^(2) + (c-11)^(2)=0 find sqrt(a+b+c)=?

    Text Solution

    |

  10. If a^(2) + b^(2) +c^(2)=2 (a-b +c)-3 then find a-b + c= ?

    Text Solution

    |

  11. If a^(2) + b^(2) + c^(2) = 2(a +2b -2c)-9 then find a+b+c=?

    Text Solution

    |

  12. If 5x^(2) + 4xy + y^(2) + 2x + 1= 0 then find the value of x, y

    Text Solution

    |

  13. If x^(2) + y^(2) + z^(2) + 12x + 4y + 5=0 find x^(12) + y+ z^(30)= ?

    Text Solution

    |

  14. If (x+ y-z -1)^(2) + (z+ x-y - 2)^(2) + (z+y-x-4)^(2)=0 find x+ y+z=?

    Text Solution

    |

  15. If a= 297, b= 298, c= 299 and find a^(2) + b^(2) + c^(2) - ab - bc - c...

    Text Solution

    |

  16. If a^(2) + b^(2) + c^(2) =ab + bc + ca find (a + c)/(b)= ?

    Text Solution

    |

  17. If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + ...

    Text Solution

    |

  18. If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+...

    Text Solution

    |

  19. If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) ...

    Text Solution

    |

  20. If a+b+c= 0, then (a+b)/(c )= ?

    Text Solution

    |