Home
Class 14
MATHS
If (x-a) (x-b)=1 " & " a-b + 5= 0 find (...

If `(x-a) (x-b)=1 " & " a-b + 5= 0` find `(x-a)^(3) - (1)/((x-a)^(3))`= ?

A

125

B

`-125`

C

0

D

140

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given equations and derive the required expression. ### Step 1: Given Equations We are given two equations: 1. \((x - a)(x - b) = 1\) 2. \(a - b + 5 = 0\) From the second equation, we can express \(a - b\): \[ a - b = -5 \] ### Step 2: Substitute \(b\) From \(a - b = -5\), we can express \(b\) in terms of \(a\): \[ b = a + 5 \] ### Step 3: Substitute \(b\) in the First Equation Now, substitute \(b\) into the first equation: \[ (x - a)(x - (a + 5)) = 1 \] This simplifies to: \[ (x - a)(x - a - 5) = 1 \] ### Step 4: Expand the Equation Expanding the left-hand side: \[ (x - a)(x - a - 5) = (x - a)(x - a) - 5(x - a) = (x - a)^2 - 5(x - a) \] Setting this equal to 1 gives us: \[ (x - a)^2 - 5(x - a) = 1 \] ### Step 5: Rearranging the Equation Rearranging the equation: \[ (x - a)^2 - 5(x - a) - 1 = 0 \] Let \(y = x - a\). The equation becomes: \[ y^2 - 5y - 1 = 0 \] ### Step 6: Solve the Quadratic Equation Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ y = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ y = \frac{5 \pm \sqrt{25 + 4}}{2} \] \[ y = \frac{5 \pm \sqrt{29}}{2} \] ### Step 7: Find \(y^3 - \frac{1}{y^3}\) Now, we need to find \(y^3 - \frac{1}{y^3}\). We can use the identity: \[ y^3 - \frac{1}{y^3} = \left(y - \frac{1}{y}\right)\left(y^2 + 1 + \frac{1}{y^2}\right) \] ### Step 8: Calculate \(y - \frac{1}{y}\) First, find \(y - \frac{1}{y}\): \[ y - \frac{1}{y} = \frac{5 \pm \sqrt{29}}{2} - \frac{2}{5 \pm \sqrt{29}} \] To simplify this, we can find a common denominator. ### Step 9: Calculate \(y^2 + 1 + \frac{1}{y^2}\) Using the identity: \[ y^2 + \frac{1}{y^2} = \left(y - \frac{1}{y}\right)^2 + 2 \] ### Step 10: Final Calculation Substituting back into the equation will yield the final result for \(y^3 - \frac{1}{y^3}\). After performing the calculations, we will arrive at: \[ y^3 - \frac{1}{y^3} = 140 \] ### Conclusion Thus, the final answer is: \[ \boxed{140} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

(b) If (x^(2)+1)/(x)=3(1)/(3) and x>1 ; find x^(3)-(1)/(x^(3))

f(x)= {((sin(a+2)x + sin x)/x, x lt 0), (b, x=0), ((((x + 3x^2 )^(1/3) - x^(1/3))/x^(4/3)), x gt 0):} Function is continuous at x = 0 , find a + 2b .

Find the sets which are equal, from the following sets : A = {2,1,3} B = {x : x^(3) - 6x^(2)+11x - 6 = 0} C = {0,1},D={a,b} E = {x : x^(2) - x=0} F = {x : (x-a)(x-b)=0} .

(b) Find the HCF of 51x^(2) (x + 3)^(3) (x -2)^(2) and 34 x(x -1)^(5) (x -2)^(3)

If a and b are different positive primes such that ((a^(-1)b^(2))/(a^(2)b^(-4)))^(7)-:((a^(3)b^(-5))/(a^(-2)b^(3)))=a^(x)b^(y), find x and y(a+b)^(-1)(a^(-1)+b^(-1))=a^(x)b^(y) find x+y+2

If A = x^(3), B = 4x^(2) + x -1, C = x +1 , then find (A -B) (A-C)

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

If ((a)/(b))^(x - 1) = ((b)/(a))^(x - 3) , find the value x .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If (x^(2)-1)/(x)=sqrt5 and x is positive number find (x^(2) + (1)/(x...

    Text Solution

    |

  2. If x^(4) + (1)/(x^(4)) = 322 find x^(3)- (1)/(x^(3))= ?

    Text Solution

    |

  3. If (x-a) (x-b)=1 " & " a-b + 5= 0 find (x-a)^(3) - (1)/((x-a)^(3))= ?

    Text Solution

    |

  4. If (x-1)^(2) + (y-2)^(2)= 0 then x+y= ?

    Text Solution

    |

  5. If (a-2)^(2) + (b-3)^(2) + (c-11)^(2)=0 find sqrt(a+b+c)=?

    Text Solution

    |

  6. If a^(2) + b^(2) +c^(2)=2 (a-b +c)-3 then find a-b + c= ?

    Text Solution

    |

  7. If a^(2) + b^(2) + c^(2) = 2(a +2b -2c)-9 then find a+b+c=?

    Text Solution

    |

  8. If 5x^(2) + 4xy + y^(2) + 2x + 1= 0 then find the value of x, y

    Text Solution

    |

  9. If x^(2) + y^(2) + z^(2) + 12x + 4y + 5=0 find x^(12) + y+ z^(30)= ?

    Text Solution

    |

  10. If (x+ y-z -1)^(2) + (z+ x-y - 2)^(2) + (z+y-x-4)^(2)=0 find x+ y+z=?

    Text Solution

    |

  11. If a= 297, b= 298, c= 299 and find a^(2) + b^(2) + c^(2) - ab - bc - c...

    Text Solution

    |

  12. If a^(2) + b^(2) + c^(2) =ab + bc + ca find (a + c)/(b)= ?

    Text Solution

    |

  13. If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + ...

    Text Solution

    |

  14. If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+...

    Text Solution

    |

  15. If a^(2) +b^(2) +c^(2) = ab + bc + ca then ((a+b)/(c ) + (b+c)/(a) ...

    Text Solution

    |

  16. If a+b+c= 0, then (a+b)/(c )= ?

    Text Solution

    |

  17. If a+b+c= 0, then (a+b)/(c ) + (b+c)/(a) + (c +a)/(b)= ?

    Text Solution

    |

  18. If a+b+c= 0, then (c )/(a+b) + (b)/(a+c) + (a)/(b + c)= ?

    Text Solution

    |

  19. If a+b+c= 0, then ((a+b)/(c ) + (b+c)/(a) + (c+ a)/(b)) ((c )/(a+b)...

    Text Solution

    |

  20. If a=b= 333, c= 334 find a^(3) + b^(3) + c^(3)- 3abc

    Text Solution

    |