Home
Class 14
MATHS
Given, a^(2) =b+c, b^(2)=c + a " & " c^(...

Given, `a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b` or `(a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1`
find `(1)/(1+a) + (1)/(1+b) + (1)/(1 + c)=` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( a^2 = b + c \) 2. \( b^2 = c + a \) 3. \( c^2 = a + b \) We can also express these equations in the form: \[ \frac{a^2}{b+c} = \frac{b^2}{c+a} = \frac{c^2}{a+b} = 1 \] From this, we can derive that: \[ a^2 = b + c \implies a^2 - b - c = 0 \] \[ b^2 = c + a \implies b^2 - c - a = 0 \] \[ c^2 = a + b \implies c^2 - a - b = 0 \] Next, we need to find the value of: \[ \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \] We can start by simplifying each term: \[ \frac{1}{1+a} = \frac{1}{1+a} \cdot \frac{(1+b)(1+c)}{(1+b)(1+c)} = \frac{(1+b)(1+c)}{(1+a)(1+b)(1+c)} \] Now, we can express the entire sum: \[ \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = \frac{(1+b)(1+c) + (1+a)(1+c) + (1+a)(1+b)}{(1+a)(1+b)(1+c)} \] Expanding the numerator: 1. \( (1+b)(1+c) = 1 + b + c + bc \) 2. \( (1+a)(1+c) = 1 + a + c + ac \) 3. \( (1+a)(1+b) = 1 + a + b + ab \) Adding these together: \[ (1 + b + c + bc) + (1 + a + c + ac) + (1 + a + b + ab) = 3 + 2(a + b + c) + (ab + ac + bc) \] Now, we can combine everything into our expression: \[ \frac{3 + 2(a + b + c) + (ab + ac + bc)}{(1+a)(1+b)(1+c)} \] Next, we need to evaluate \( (1+a)(1+b)(1+c) \): \[ (1+a)(1+b)(1+c) = 1 + (a+b+c) + (ab + ac + bc) + abc \] Now we can substitute back into our expression: \[ \frac{3 + 2(a + b + c) + (ab + ac + bc)}{1 + (a+b+c) + (ab + ac + bc) + abc} \] To find a specific numerical value, we can use the relationships established by the original equations. Given that \( a^2 = b + c \), \( b^2 = c + a \), and \( c^2 = a + b \), we can assume \( a = b = c \) for simplicity. Let \( a = b = c = k \). Then we have: \[ k^2 = k + k \implies k^2 = 2k \implies k(k - 2) = 0 \] Thus, \( k = 0 \) or \( k = 2 \). If \( k = 0 \): \[ \frac{1}{1+0} + \frac{1}{1+0} + \frac{1}{1+0} = 1 + 1 + 1 = 3 \] If \( k = 2 \): \[ \frac{1}{1+2} + \frac{1}{1+2} + \frac{1}{1+2} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1 \] Thus, the possible values for \( \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} \) are either \( 3 \) or \( 1 \). **Final Answer:** \[ \frac{1}{1+a} + \frac{1}{1+b} + \frac{1}{1+c} = 1 \text{ (if } a = b = c = 2 \text{)} \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (a)/(1+a) + (b)/(1+b) + (c )/(1+c) = ?

If (a)/(b+c) + (b)/(c+a) + (c )/(a+b)= 1 find (a^(2))/(b+c) + (b^(2))/(c+a) + (c^(2))/(a+b)= ?

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. If (a)/(b+c) + (b)/(c+a) + (c )/(a+b)= 1 find (a^(2))/(b+c) + (b^(2))/...

    Text Solution

    |

  2. If (a^(2)-bc)/(a^(2) +bc) + (b^(2)-ac)/(b^(2) + ac) + (c^(2)-ab)/(c^(2...

    Text Solution

    |

  3. Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = ...

    Text Solution

    |

  4. Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = ...

    Text Solution

    |

  5. (x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (a)/...

    Text Solution

    |

  6. (x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (x)...

    Text Solution

    |

  7. If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (a)/(x+...

    Text Solution

    |

  8. If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (x)/(x+2...

    Text Solution

    |

  9. If xy + yz + zx = 1 find (x+y)/(1-xy) + (y+z)/(1-yz) + (z + x)/(1-zx)=...

    Text Solution

    |

  10. If x= (4sqrt(15))/(sqrt5+sqrt3), then (x+sqrt(20))/(x-sqrt(20))+(x+sqr...

    Text Solution

    |

  11. If x= (1)/(sqrt3 + sqrt2), y= (1)/(sqrt3- sqrt2) then find (1)/(x +1) ...

    Text Solution

    |

  12. If x= (sqrt87- sqrt71)/(sqrt55 + sqrt39) " & "y= (sqrt87 + sqrt71)/(sq...

    Text Solution

    |

  13. What wil be the minimum value of 12 + (x-2)^(2) ?

    Text Solution

    |

  14. What will be the maximum value of 15-(x-3)^(2) ?

    Text Solution

    |

  15. If 5- (3a-2b)^(2) will be "max"^(m), when (a)/(b)= ?

    Text Solution

    |

  16. Find the minimum value of 3x^(2) - 6x + 11

    Text Solution

    |

  17. Find the maximum value of 13-4x-x^(2)

    Text Solution

    |

  18. Expression 15- 7x- 2x^2 will be maximum when x= ?

    Text Solution

    |

  19. Expression 4x^(2) - 16x + 17 will be minimum when x= ?

    Text Solution

    |

  20. Find minimum value of (9-x) (2-x)

    Text Solution

    |