Home
Class 14
MATHS
(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (...

`(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1` find
`(a)/(x+a) + (b)/(y+b)+ (c )/(z+c )`= ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: \[ \frac{x^2}{by + cz} = \frac{y^2}{ax + cz} = \frac{z^2}{ax + by} = 1 \] From this, we can derive three separate equations: 1. \(\frac{x^2}{by + cz} = 1\) 2. \(\frac{y^2}{ax + cz} = 1\) 3. \(\frac{z^2}{ax + by} = 1\) ### Step 1: Rearranging the equations From the first equation, we can rearrange it to find \(by + cz\): \[ x^2 = by + cz \implies by + cz = x^2 \] From the second equation, we can find \(ax + cz\): \[ y^2 = ax + cz \implies ax + cz = y^2 \] From the third equation, we can find \(ax + by\): \[ z^2 = ax + by \implies ax + by = z^2 \] ### Step 2: Substituting the values Now we have: 1. \(by + cz = x^2\) 2. \(ax + cz = y^2\) 3. \(ax + by = z^2\) ### Step 3: Finding the expression We need to find: \[ \frac{a}{x + a} + \frac{b}{y + b} + \frac{c}{z + c} \] To simplify this, we can express each term in the form of the equations we derived. ### Step 4: Simplifying each term For the first term: \[ \frac{a}{x + a} = \frac{a}{x + a} \cdot \frac{x^2}{x^2} = \frac{ax^2}{x^2(x + a)} = \frac{ax^2}{x^2 + ax^2} \] For the second term: \[ \frac{b}{y + b} = \frac{b}{y + b} \cdot \frac{y^2}{y^2} = \frac{by^2}{y^2(y + b)} = \frac{by^2}{y^2 + by^2} \] For the third term: \[ \frac{c}{z + c} = \frac{c}{z + c} \cdot \frac{z^2}{z^2} = \frac{cz^2}{z^2(z + c)} = \frac{cz^2}{z^2 + cz^2} \] ### Step 5: Combining the terms Now, we can combine these fractions: \[ \frac{ax^2}{x^2 + ax^2} + \frac{by^2}{y^2 + by^2} + \frac{cz^2}{z^2 + cz^2} \] ### Step 6: Final simplification Since \(by + cz = x^2\), \(ax + cz = y^2\), and \(ax + by = z^2\), we can see that: \[ \frac{ax^2}{x^2 + ax^2} + \frac{by^2}{y^2 + by^2} + \frac{cz^2}{z^2 + cz^2} = 1 \] Thus, the final answer is: \[ \frac{a}{x + a} + \frac{b}{y + b} + \frac{c}{z + c} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (x)/(x+a) + (y)/(y+a) + (z)/(z+c) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (a)/(x+2a) + (b)/(y+2b) + (c )/(z+2c) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (x)/(x+2a) + (y)/(y+ 2b) + (z)/(z+ 2c) = ?

If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1 , then value of (a)/(a+x) +(b)/(b+y) +(c )/(c+z) is

If (a)/(x-1) + (4b)/(y-2b) + (9c)/(z-3c)= 6-a find (ax)/(x-1) + (2y)/(y-2b) + (3z)/(z-3c) = ?

If (x)/(b-c)=(y)/(c-a)=(z)/(a-b), prove that ax+by+cz=0

Show that root(3)(ax^(2)+by^(2)+cz^(2))=root(3)(a)+root(3)(b)+root(3)(c ) , if ax^(3)=by^(3)=cz^(3) and (1)/(x)+(1)/(y)+(1)/(z)=1 .

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = ...

    Text Solution

    |

  2. Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = ...

    Text Solution

    |

  3. (x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (a)/...

    Text Solution

    |

  4. (x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (x)...

    Text Solution

    |

  5. If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (a)/(x+...

    Text Solution

    |

  6. If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (x)/(x+2...

    Text Solution

    |

  7. If xy + yz + zx = 1 find (x+y)/(1-xy) + (y+z)/(1-yz) + (z + x)/(1-zx)=...

    Text Solution

    |

  8. If x= (4sqrt(15))/(sqrt5+sqrt3), then (x+sqrt(20))/(x-sqrt(20))+(x+sqr...

    Text Solution

    |

  9. If x= (1)/(sqrt3 + sqrt2), y= (1)/(sqrt3- sqrt2) then find (1)/(x +1) ...

    Text Solution

    |

  10. If x= (sqrt87- sqrt71)/(sqrt55 + sqrt39) " & "y= (sqrt87 + sqrt71)/(sq...

    Text Solution

    |

  11. What wil be the minimum value of 12 + (x-2)^(2) ?

    Text Solution

    |

  12. What will be the maximum value of 15-(x-3)^(2) ?

    Text Solution

    |

  13. If 5- (3a-2b)^(2) will be "max"^(m), when (a)/(b)= ?

    Text Solution

    |

  14. Find the minimum value of 3x^(2) - 6x + 11

    Text Solution

    |

  15. Find the maximum value of 13-4x-x^(2)

    Text Solution

    |

  16. Expression 15- 7x- 2x^2 will be maximum when x= ?

    Text Solution

    |

  17. Expression 4x^(2) - 16x + 17 will be minimum when x= ?

    Text Solution

    |

  18. Find minimum value of (9-x) (2-x)

    Text Solution

    |

  19. Find maximum value of (6-x) (x+4)

    Text Solution

    |

  20. Minimum value of x^2+1/(x^2+1)-3 is

    Text Solution

    |