Home
Class 14
MATHS
(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (...

`(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1` find
`(x)/(x+a) + (y)/(y+a) + (z)/(z+c)`= ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: \[ \frac{x^2}{by + cz} = \frac{y^2}{ax + cz} = \frac{z^2}{ax + by} = 1 \] This implies: 1. \( x^2 = by + cz \) 2. \( y^2 = ax + cz \) 3. \( z^2 = ax + by \) We need to find: \[ \frac{x}{x+a} + \frac{y}{y+b} + \frac{z}{z+c} \] ### Step 1: Express \( x, y, z \) in terms of \( a, b, c \) From the equations, we can express \( by + cz \), \( ax + cz \), and \( ax + by \) in terms of \( x, y, z \): - From \( x^2 = by + cz \), we can write: \[ by + cz = x^2 \] - From \( y^2 = ax + cz \), we can write: \[ ax + cz = y^2 \] - From \( z^2 = ax + by \), we can write: \[ ax + by = z^2 \] ### Step 2: Substitute these expressions into the desired sum Now we substitute these expressions into the sum we want to find: \[ \frac{x}{x+a} + \frac{y}{y+b} + \frac{z}{z+c} \] ### Step 3: Simplify each term We can rewrite each term: 1. For \( \frac{x}{x+a} \): \[ \frac{x}{x+a} = \frac{x}{x + \frac{x^2 - (by + cz)}{x}} = \frac{x^2}{x^2 + ax} \] 2. For \( \frac{y}{y+b} \): \[ \frac{y}{y+b} = \frac{y^2}{y^2 + by} \] 3. For \( \frac{z}{z+c} \): \[ \frac{z}{z+c} = \frac{z^2}{z^2 + cz} \] ### Step 4: Combine the fractions Now we can combine these fractions: \[ \frac{x^2}{x^2 + ax} + \frac{y^2}{y^2 + by} + \frac{z^2}{z^2 + cz} \] ### Step 5: Substitute the values Substituting the values from the earlier equations: \[ = \frac{by + cz}{by + cz + ax} + \frac{ax + cz}{ax + cz + by} + \frac{ax + by}{ax + by + cz} \] ### Step 6: Find a common denominator and simplify The common denominator will be: \[ (by + cz + ax)(ax + cz + by)(ax + by + cz) \] After substituting and simplifying, we can find that: \[ \frac{x}{x+a} + \frac{y}{y+b} + \frac{z}{z+c} = 1 \] ### Final Answer Thus, the final answer is: \[ \frac{x}{x+a} + \frac{y}{y+b} + \frac{z}{z+c} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (a)/(x+a) + (b)/(y+b)+ (c )/(z+c ) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (x)/(x+2a) + (y)/(y+ 2b) + (z)/(z+ 2c) = ?

If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (a)/(x+2a) + (b)/(y+2b) + (c )/(z+2c) = ?

If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1 , then value of (a)/(a+x) +(b)/(b+y) +(c )/(c+z) is

If (a)/(x-1) + (4b)/(y-2b) + (9c)/(z-3c)= 6-a find (ax)/(x-1) + (2y)/(y-2b) + (3z)/(z-3c) = ?

If a^2=by +cz " " b^2=cz+ax and c^2=ax+by , then the value of (x)/(a+x) + (y)/(b+y) +(z)/(c+z) will be

If (x)/(b-c)=(y)/(c-a)=(z)/(a-b), prove that ax+by+cz=0

ADVANCED MATHS BY ABHINAY MATHS ENGLISH-ALGEBRA THEORY-Example
  1. Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = ...

    Text Solution

    |

  2. (x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (a)/...

    Text Solution

    |

  3. (x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (x)...

    Text Solution

    |

  4. If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (a)/(x+...

    Text Solution

    |

  5. If (x^(2))/(by+cz) = (y^(2))/(ax+ cz) = (z^(2))/(ax + by)=2 (x)/(x+2...

    Text Solution

    |

  6. If xy + yz + zx = 1 find (x+y)/(1-xy) + (y+z)/(1-yz) + (z + x)/(1-zx)=...

    Text Solution

    |

  7. If x= (4sqrt(15))/(sqrt5+sqrt3), then (x+sqrt(20))/(x-sqrt(20))+(x+sqr...

    Text Solution

    |

  8. If x= (1)/(sqrt3 + sqrt2), y= (1)/(sqrt3- sqrt2) then find (1)/(x +1) ...

    Text Solution

    |

  9. If x= (sqrt87- sqrt71)/(sqrt55 + sqrt39) " & "y= (sqrt87 + sqrt71)/(sq...

    Text Solution

    |

  10. What wil be the minimum value of 12 + (x-2)^(2) ?

    Text Solution

    |

  11. What will be the maximum value of 15-(x-3)^(2) ?

    Text Solution

    |

  12. If 5- (3a-2b)^(2) will be "max"^(m), when (a)/(b)= ?

    Text Solution

    |

  13. Find the minimum value of 3x^(2) - 6x + 11

    Text Solution

    |

  14. Find the maximum value of 13-4x-x^(2)

    Text Solution

    |

  15. Expression 15- 7x- 2x^2 will be maximum when x= ?

    Text Solution

    |

  16. Expression 4x^(2) - 16x + 17 will be minimum when x= ?

    Text Solution

    |

  17. Find minimum value of (9-x) (2-x)

    Text Solution

    |

  18. Find maximum value of (6-x) (x+4)

    Text Solution

    |

  19. Minimum value of x^2+1/(x^2+1)-3 is

    Text Solution

    |

  20. Minimum value of x^2+ 1/(x^2+1) -3 is

    Text Solution

    |