Home
Class 14
MATHS
If x= (1)/(sqrt3 + sqrt2), y= (1)/(sqrt3...

If `x= (1)/(sqrt3 + sqrt2), y= (1)/(sqrt3- sqrt2)` then find `(1)/(x +1) + (1)/(y+ 1)`

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{x + 1} + \frac{1}{y + 1} \) given \( x = \frac{1}{\sqrt{3} + \sqrt{2}} \) and \( y = \frac{1}{\sqrt{3} - \sqrt{2}} \). ### Step 1: Rationalize \( x \) Given: \[ x = \frac{1}{\sqrt{3} + \sqrt{2}} \] To rationalize \( x \), we multiply the numerator and the denominator by \( \sqrt{3} - \sqrt{2} \): \[ x = \frac{1 \cdot (\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2})} \] Using the difference of squares: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Thus: \[ x = \sqrt{3} - \sqrt{2} \] ### Step 2: Rationalize \( y \) Given: \[ y = \frac{1}{\sqrt{3} - \sqrt{2}} \] To rationalize \( y \), we multiply the numerator and the denominator by \( \sqrt{3} + \sqrt{2} \): \[ y = \frac{1 \cdot (\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] Again using the difference of squares: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] Thus: \[ y = \sqrt{3} + \sqrt{2} \] ### Step 3: Calculate \( x + 1 \) and \( y + 1 \) Now we calculate: \[ x + 1 = (\sqrt{3} - \sqrt{2}) + 1 = \sqrt{3} - \sqrt{2} + 1 \] \[ y + 1 = (\sqrt{3} + \sqrt{2}) + 1 = \sqrt{3} + \sqrt{2} + 1 \] ### Step 4: Find \( \frac{1}{x + 1} + \frac{1}{y + 1} \) We need to find: \[ \frac{1}{x + 1} + \frac{1}{y + 1} = \frac{1}{\sqrt{3} - \sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2} + 1} \] To combine these fractions, we find a common denominator: \[ \text{Common Denominator} = (\sqrt{3} - \sqrt{2} + 1)(\sqrt{3} + \sqrt{2} + 1) \] The numerator will be: \[ (\sqrt{3} + \sqrt{2} + 1) + (\sqrt{3} - \sqrt{2} + 1) \] Simplifying the numerator: \[ = 2\sqrt{3} + 2 \] ### Step 5: Simplify the expression Now we have: \[ \frac{2\sqrt{3} + 2}{(\sqrt{3} - \sqrt{2} + 1)(\sqrt{3} + \sqrt{2} + 1)} \] Now, we need to calculate the denominator: \[ (\sqrt{3} - \sqrt{2} + 1)(\sqrt{3} + \sqrt{2} + 1) = (\sqrt{3})^2 + \sqrt{3} + \sqrt{2} - \sqrt{2} + \sqrt{3} + 1 - \sqrt{2} + 1 \] This simplifies to: \[ = 3 + 2\sqrt{3} + 1 - 2 = 2 + 2\sqrt{3} \] ### Final Result Thus, we have: \[ \frac{2(\sqrt{3} + 1)}{2 + 2\sqrt{3}} = \frac{\sqrt{3} + 1}{1 + \sqrt{3}} = 1 \] So: \[ \frac{1}{x + 1} + \frac{1}{y + 1} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x = (1)/(2 + sqrt3) , y = (1)/(2 - sqrt3) then the value of (1)/(x + 1) + (1)/(y +1) is :

If x=(1)/(sqrt(3)-sqrt(2)) find x+(1)/(x)

If x = 1/(2+sqrt3) , y =1/(2-sqrt3) , then the value of 1/(x+1) +1/(y+1) is

If x=(sqrt3-1)/(sqrt3+1) and y=(sqrt3+1)/(sqrt3-1) then x^2-xy+y^2

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)