Home
Class 14
MATHS
If x= (sqrt87- sqrt71)/(sqrt55 + sqrt39)...

If `x= (sqrt87- sqrt71)/(sqrt55 + sqrt39) " & "y= (sqrt87 + sqrt71)/(sqrt55- sqrt39)` then find `(1)/(x+1) + (1)/(y+ 1)=` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{x+1} + \frac{1}{y+1} \) given: \[ x = \frac{\sqrt{87} - \sqrt{71}}{\sqrt{55} + \sqrt{39}} \] \[ y = \frac{\sqrt{87} + \sqrt{71}}{\sqrt{55} - \sqrt{39}} \] ### Step 1: Calculate \( x \cdot y \) We start by calculating the product \( x \cdot y \): \[ x \cdot y = \left( \frac{\sqrt{87} - \sqrt{71}}{\sqrt{55} + \sqrt{39}} \right) \cdot \left( \frac{\sqrt{87} + \sqrt{71}}{\sqrt{55} - \sqrt{39}} \right) \] Using the difference of squares formula \( (a-b)(a+b) = a^2 - b^2 \): \[ = \frac{(\sqrt{87})^2 - (\sqrt{71})^2}{(\sqrt{55} + \sqrt{39})(\sqrt{55} - \sqrt{39})} \] Calculating the squares: \[ = \frac{87 - 71}{55 - 39} \] This simplifies to: \[ = \frac{16}{16} = 1 \] ### Step 2: Calculate \( x + y \) Next, we need to find \( x + y \): \[ x + y = \frac{\sqrt{87} - \sqrt{71}}{\sqrt{55} + \sqrt{39}} + \frac{\sqrt{87} + \sqrt{71}}{\sqrt{55} - \sqrt{39}} \] Finding a common denominator: \[ = \frac{(\sqrt{87} - \sqrt{71})(\sqrt{55} - \sqrt{39}) + (\sqrt{87} + \sqrt{71})(\sqrt{55} + \sqrt{39})}{(\sqrt{55} + \sqrt{39})(\sqrt{55} - \sqrt{39})} \] Calculating the numerator: \[ = \frac{(\sqrt{87} \sqrt{55} - \sqrt{87} \sqrt{39} - \sqrt{71} \sqrt{55} + \sqrt{71} \sqrt{39}) + (\sqrt{87} \sqrt{55} + \sqrt{87} \sqrt{39} + \sqrt{71} \sqrt{55} + \sqrt{71} \sqrt{39})}{16} \] Combining like terms: \[ = \frac{2\sqrt{87} \sqrt{55} + 2\sqrt{71} \sqrt{39}}{16} \] Thus, we can simplify: \[ = \frac{\sqrt{87} \sqrt{55} + \sqrt{71} \sqrt{39}}{8} \] ### Step 3: Calculate \( \frac{1}{x+1} + \frac{1}{y+1} \) Now, we can use the formula: \[ \frac{1}{x+1} + \frac{1}{y+1} = \frac{y+1 + x+1}{(x+1)(y+1)} = \frac{x+y+2}{xy + x + y + 1} \] Substituting the values we found: - \( xy = 1 \) - \( x + y = 2 \) Thus: \[ = \frac{2 + 2}{1 + 2 + 1} = \frac{4}{4} = 1 \] ### Final Answer The final answer is: \[ \frac{1}{x+1} + \frac{1}{y+1} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If x= (1)/(sqrt3 + sqrt2), y= (1)/(sqrt3- sqrt2) then find (1)/(x +1) + (1)/(y+ 1)

If sqrt(x)+sqrt(y)=4, then find (dx)/(dy) at y=1

If sqrt(x)+sqrt(y)=4, then find(dx)/(dy) at y=1

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)