Home
Class 14
MATHS
Find minimum value of (9-x) (2-x)...

Find minimum value of `(9-x) (2-x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \( (9-x)(2-x) \), we can follow these steps: ### Step 1: Expand the expression First, we will expand the expression \( (9-x)(2-x) \). \[ (9-x)(2-x) = 9 \cdot 2 - 9x - 2x + x^2 \] \[ = 18 - 11x + x^2 \] ### Step 2: Rewrite in standard quadratic form We can rewrite the expression in standard quadratic form: \[ x^2 - 11x + 18 \] ### Step 3: Find the vertex of the quadratic To find the minimum value of a quadratic function \( ax^2 + bx + c \), we can use the vertex formula \( x = -\frac{b}{2a} \). Here, \( a = 1 \) and \( b = -11 \). \[ x = -\frac{-11}{2 \cdot 1} = \frac{11}{2} \] ### Step 4: Substitute \( x \) back into the expression Now, we substitute \( x = \frac{11}{2} \) back into the quadratic expression to find the minimum value. \[ \text{Minimum value} = \left(\frac{11}{2}\right)^2 - 11\left(\frac{11}{2}\right) + 18 \] Calculating each term: 1. \( \left(\frac{11}{2}\right)^2 = \frac{121}{4} \) 2. \( -11\left(\frac{11}{2}\right) = -\frac{121}{2} = -\frac{242}{4} \) 3. \( 18 = \frac{72}{4} \) Now combine these: \[ \text{Minimum value} = \frac{121}{4} - \frac{242}{4} + \frac{72}{4} \] \[ = \frac{121 - 242 + 72}{4} = \frac{-49}{4} \] ### Final Result Thus, the minimum value of \( (9-x)(2-x) \) is \[ \boxed{-\frac{49}{4}} \] ---
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

Find the minimum value of (x_1-x_2)^2+(sqrt(2-x_1^2)-9/(x_2))^2 where x_1in(0,sqrt2) and x_2inR^+

Find the maximum and minimum values of f(x)=(1-x)+|x|

Find the maximum and minimum values of f(x) = (-x + 2sin x) " on " [0, 2pi]

Find the minimum value of f(x)=(x^(2)sin^(2)x+4)/(x sin x), where x in(0,(pi)/(2))

if f(x)=(x^(3))/(3)-x^(2)+(1)/(5) find maximum and minimum value of f(x)

The difference of maximum and minimum value of (x^(2)+4x+9)/(x^(2)+9) is

Find the minimum value of f(X)=x^(2)-5x+6 .

Find the minimum value of 3x^2-6x+7, x in R and also find the corresponding value of x.

Find the minimum value of sin^(2)x