Home
Class 14
MATHS
If (x-7) (y-10) (z- 12)= 1000, then find...

If `(x-7) (y-10) (z- 12)= 1000`, then find the minimum value of `(x+ y+ z)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( x + y + z \) given the equation \( (x - 7)(y - 10)(z - 12) = 1000 \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Rewrite the equation**: \[ (x - 7)(y - 10)(z - 12) = 1000 \] Let \( a = x - 7 \), \( b = y - 10 \), and \( c = z - 12 \). Then we have: \[ abc = 1000 \] 2. **Apply the AM-GM inequality**: The AM-GM inequality states that for non-negative numbers, the arithmetic mean is greater than or equal to the geometric mean: \[ \frac{a + b + c}{3} \geq \sqrt[3]{abc} \] Substituting \( abc = 1000 \): \[ \frac{a + b + c}{3} \geq \sqrt[3]{1000} \] 3. **Calculate the cube root**: \[ \sqrt[3]{1000} = 10 \] Therefore: \[ \frac{a + b + c}{3} \geq 10 \] 4. **Multiply both sides by 3**: \[ a + b + c \geq 30 \] 5. **Substitute back to find \( x + y + z \)**: Recall that: \[ a = x - 7, \quad b = y - 10, \quad c = z - 12 \] Thus: \[ (x - 7) + (y - 10) + (z - 12) = a + b + c \] This simplifies to: \[ x + y + z - 29 \geq 30 \] 6. **Add 29 to both sides**: \[ x + y + z \geq 30 + 29 \] \[ x + y + z \geq 59 \] 7. **Conclusion**: The minimum value of \( x + y + z \) is \( 59 \).
Promotional Banner

Topper's Solved these Questions

  • AVERAGE

    ADVANCED MATHS BY ABHINAY MATHS ENGLISH|Exercise QUESTIONS|115 Videos

Similar Questions

Explore conceptually related problems

If (x - 5) (y + 6)(z -8)= 1331 , then the minimum value x + y + z is :

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y,z<=1, then the minimum value of x(1-z)+y(1-x)+z(1-y) is

If 2x+3y+6z=14 then the minimum value of x^(2)+y^(2)+z^(2) is

In In x+In y+In z=1, then the minimum value of e^(-(1)/(3))(x+y+z) is

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is