Home
Class 12
MATHS
Prove that int(0)^(pi//2)log (sinx)dx=in...

Prove that `int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi//2)log (sec x) dx=

int_(0)^((pi)/(2))log(cos x)dx=

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(sin x)dx

Prove that: int_0^(pi//2)logsinx\ dx=\ int_0^(pi//2)logcosx\ dx=-pi/2log2

int_(0)^(pi)log sin^(2)x dx=

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi//2) log (tan x ) dx=