Home
Class 11
MATHS
If y = log^nx, where log^n means log log...

If `y = log^nx`, where `log^n` means log log log…
(repeated n time), then x log x log `x log^2``xlog^3``x…log^(n-1)``xlog^n`xdy/dx is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = log^nx , where log^n means log log log… (repeated n time), then x log x log^2 xlog^3 x…log^(n-1) xlog^n xdy/dx is equal to

If f_(n) = log log … log x (log is repeated n times) then int [x f_(1)(x) f_(2)(x) … f_(n)(x)]^(-1) dx is equal to

If l^(r)(x) means log log log......x being repeated r xx,then int[(xl(x)l^(2)(x)l^(3)(x)...l^(r)(x)]^(-1)dx is equal to :

If l^(r)(x) means log log log...x,the log being repeated r xx,then int[x.l(x)*l^(2)(x)*l^(3)(x)...I^(r)(x)]^(-1)dx is equal to

Evaluate : int x^n log x dx.

2(log a+log a^(2)+log a^(3)+log a^(4)+............+log a^(n)) is equal to

(1)/(x.log x.log(log x))