Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that:`|a^2+1a b a c a bb^2+1b cc a c b c^2+1|=(1+a^2+b^2+b^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

By using properties of determinants.Show that: det[[a^(2)+1,ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=(1+a^(2)+b^(2)+b^(2))

By using properties of determinants. Show that: |1+a^2-b^2 2a b-2b2a b1-a^2+b^2 2a2b-2a1-a^2-b^2|=(1+a^2+b^2)^3

By using properties of determinants. Show that: (i) |1a a^2 1bb^2 1cc^2|=(a-b)(b-c)(c-a) (ii) |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c)

3. Using properties of determinants, show that :|[b+c,a,b] , [c+a,c,a] , [a+b,b,c]| = (a + b + c) (a-c)^2

Using properties of determinants,prove the following: det[[a^(2),ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=1+a^(2)+b^(2)+c^(2)

Using properties of determinants,prove the following det[[a^(2),ab,acab,b^(2)+1,bcca,cb,c^(2)+1]]=1+a^(2)+b^(2)+c^(2)

Using properties of determinants, prove that |[a,b,c] , [a^2,b^2,c^2] , [b+c,c+a,a+b]|=(a+b+c)(a-b)(b-c)(c-a)

Using properties of determinant prove that |a+b+c-c-b-c a+b+c-a-b-a a+b+c|=2(a+b)(b+c)(c+a)

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0